当前位置:科学网首页 > 小柯机器人 >详情
科学家实现用于高通量集成量子技术的固态量子发射体的超分辨快照高光谱成像
作者:小柯机器人 发布时间:2024/5/26 16:59:52

近日,中山大学的刘进&王雪华及其研究团队取得一项新进展。经过不懈努力,他们实现了用于高通量集成量子技术的固态量子发射体的超分辨快照高光谱成像。相关研究成果已于2024年5月22日在国际知名学术期刊《自然—光子学》上发表。

据悉,耦合到集成光子纳米结构的固态量子发射体是探索腔量子电动力学基本现象的关键,在光子量子技术中有着广泛的应用。集成光子学最令人兴奋的前景之一是在单个芯片上大规模生产小型化器件的潜力。然而,单固态量子发射体与光子纳米结构支持的光模式之间的光谱和空间不匹配,阻碍了光-物质耦合的效率和再现性。

为了解决这一长期存在的问题,研究人员开发了一种固态量子发射体的高光谱成像平台和方法。空间分布和光谱展宽的InAs量子点嵌入在由两个分布式布拉格反射镜组成的GaAs/AlGaAs一维(1D)平面腔中。研究人员利用色散一维腔的扩展模式及其对量子点面外发射的塑造方式,从单幅宽场光致发光图像中提取出每个点的空间位置和发射波长,空间和光谱精度分别达到15nm和0.4nm。

然后,他们通过将一维受限平面腔蚀刻成三维受限微柱来制造量子光源。他们利用开放平面腔对该技术进行扩展,可用于各种紧凑的量子光子器件,具有大规模集成的扩展功能。这项技术对于涉及大量固态量子发射体的量子光子应用而言,其在空间和光谱表征方面的优势尤为显著,极具吸引力。

附:英文原文

Title: Super-resolved snapshot hyperspectral imaging of solid-state quantum emitters for high-throughput integrated quantum technologies

Author: Liu, Shunfa, Li, Xueshi, Liu, Hanqing, Qiu, Guixin, Ma, Jiantao, Nie, Liang, Meng, Yun, Hu, Xiaolong, Ni, Haiqiao, Niu, Zhichuan, Qiu, Cheng-Wei, Wang, Xuehua, Liu, Jin

Issue&Volume: 2024-05-22

Abstract: Solid-state quantum emitters coupled to integrated photonic nanostructures are quintessential for exploring fundamental phenomena in cavity quantum electrodynamics and are used in a wide range of photonic quantum technologies. One of the most exciting prospects for integrated photonics is the potential for massive production of miniaturized devices on a single chip. However, the efficiency and reproducibility of light–matter coupling are hindered by the spectral and spatial mismatch between the single solid-state quantum emitters and the optical modes supported by the photonic nanostructures. Here we develop a platform and method for hyperspectral imaging of solid-state quantum emitters to address this long-standing issue. Spatially distributed and spectrally broadened InAs quantum dots are embedded in a GaAs/AlGaAs one-dimensional (1D) planar cavity that consists of two distributed Bragg reflectors acting as mirrors. By exploiting the extended mode of the dispersive 1D cavity and the way it shapes the out-of-plane emission from the quantum dots, we extract the spatial position and emission wavelength of each dot from a single wide-field photoluminescence image, with a spatial and spectral accuracy down to 15nm and 0.4nm, respectively. We then fabricate quantum light sources by etching the 1D confined planar cavity into 3D confined micropillars. Extension of this technique using an open planar cavity can be exploited for a variety of compact quantum photonic devices with expanded functionalities for large-scale integration. Our technology is particularly appealing for quantum photonic applications that involve the spatial and spectral characterization of a large number of solid-state quantum emitters.

DOI: 10.1038/s41566-024-01449-4

Source: https://www.nature.com/articles/s41566-024-01449-4

期刊信息
Nature Photonics:《自然—光子学》,创刊于2007年。隶属于施普林格·自然出版集团,最新IF:39.728