当前位置:科学网首页 > 小柯机器人 >详情
科学家获得单层晶体中单个空位的超快原子尺度扫描隧穿光谱
作者:小柯机器人 发布时间:2024/3/16 17:08:06

近日,德国雷根斯堡大学Y. A.&Gerasimenko&J.Repp&J. Wilhelm及其研究团队取得一项新进展。经过不懈努力,他们获得了单层晶体中单个空位的超快原子尺度扫描隧穿光谱。相关研究成果已于2024年3月14日在国际知名学术期刊《自然—光子学》上发表。

本文利用光波扫描隧穿显微镜和光谱学,在空间、时间和能量上直接解析了在晶格振动的受控激发下,莫尔畸变的WSe2单层中孤立硒空穴的自旋轨道分裂能级是如何演变的。通过局部激发声子振荡,并拍摄比振动周期更快的空位状态超快能量分辨快照,研究人员直接测量了孤立单原子缺陷中电子-声子耦合的影响。原子空间、亚皮秒时间和毫电子伏能量分辨率的结合,标志着对复杂量子材料全面理解的突破性发展,其中关键的微观基本相互作用现在可以逐一解开。

据悉,原子薄半导体中的缺陷及其莫尔纳米异质结构,已经成为量子科学的一个独特的测试平台。强光-物质耦合、大自旋-轨道相互作用和增强的库仑关联,为未来的量子比特操作和高效的单光子量子发射提供了自旋-光子界面。然而,直接观测单个缺陷的电子结构与其他微观元激发,在其固有长度、时间和能量尺度上的相互作用,至今仍是一个尚未实现的梦想。

附:英文原文

Title: Ultrafast atomic-scale scanning tunnelling spectroscopy of a single vacancy in a monolayer crystal

Author: Roelcke, C., Kastner, L. Z., Graml, M., Biereder, A., Wilhelm, J., Repp, J., Huber, R., Gerasimenko, Y. A.

Issue&Volume: 2024-03-14

Abstract: Defects in atomically thin semiconductors and their moiré heterostructures have emerged as a unique testbed for quantum science. Strong light–matter coupling, large spin–orbit interaction and enhanced Coulomb correlations facilitate a spin–photon interface for future qubit operations and efficient single-photon quantum emitters. Yet, directly observing the relevant interplay of the electronic structure of a single defect with other microscopic elementary excitations on their intrinsic length, time and energy scales remained a long-held dream. Here we directly resolve in space, time and energy how a spin–orbit-split energy level of an isolated selenium vacancy in a moiré-distorted WSe2 monolayer evolves under the controlled excitation of lattice vibrations, using lightwave scanning tunnelling microscopy and spectroscopy. By locally launching a phonon oscillation and taking ultrafast energy-resolved snapshots of the vacancy’s states faster than the vibration period, we directly measure the impact of electron–phonon coupling in an isolated single-atom defect. The combination of atomic spatial, sub-picosecond temporal and millielectronvolt energy resolution marks a disruptive development towards a comprehensive understanding of complex quantum materials, where the key microscopic elementary interactions can now be disentangled, one by one.

DOI: 10.1038/s41566-024-01390-6

Source: https://www.nature.com/articles/s41566-024-01390-6

期刊信息
Nature Photonics:《自然—光子学》,创刊于2007年。隶属于施普林格·自然出版集团,最新IF:39.728