当前位置:科学网首页 > 小柯机器人 >详情
光流体多路复用组装和微型机器人研究
作者:小柯机器人 发布时间:2024/2/29 16:19:26

近日,德国马克斯·普朗克分子细胞生物学和遗传学研究所的Moritz Kreysing及其研究团队取得一项新进展。经过不懈努力,他们对光流体多路复用组装和微型机器人进行研究。相关研究成果已于2024年2月27日在国际知名学术期刊《光:科学与应用》上发表。

该研究团队展示了激光诱导局部流场的迭代应用,在多个微粒相对定位方面具有显著效果,且不受材料性质限制。相较于现有理论,此方法实现了颗粒的动态操控,并通过低于热扩散极限的温度多路复用实现非线性加速,显著提高了操纵精度。所得流场具备独特的拓扑结构和数学可预测性,展示了前所未有的微流体控制能力。

通过驱动具有30个自由度的微型人形机器人,验证了这一技术的有效性,机器人运动特征明确,能够传达如性别、情绪和紧张等个人特征。这一研究成果在高分辨率微流体操纵领域具有变革性潜力,对装配、微制造、生命科学、机器人技术和光液压驱动的微工厂等领域均具有重要意义。通过光学生成流的反馈控制,该技术为实现精确、动态的颗粒组装和复杂微型机器人操作提供了可能。

据悉,高分辨率显微操作技术,如光学镊子,在众多学科领域中都引起了广泛兴趣。然而,这些技术的应用范围受到材料特性和激光曝光限制的影响。虽然微流体操纵技术已被视为一种潜在的替代方案,但其本身能力有限,并且在实施和控制过程中面临着诸多实际挑战。

附:英文原文

Title: Opto-fluidically multiplexed assembly and micro-robotics

Author: Erben, Elena, Liao, Weida, Minopoli, Antonio, Maghelli, Nicola, Lauga, Eric, Kreysing, Moritz

Issue&Volume: 2024-02-27

Abstract: Techniques for high-definition micromanipulations, such as optical tweezers, hold substantial interest across a wide range of disciplines. However, their applicability remains constrained by material properties and laser exposure. And while microfluidic manipulations have been suggested as an alternative, their inherent capabilities are limited and further hindered by practical challenges of implementation and control. Here we show that the iterative application of laser-induced, localized flow fields can be used for the relative positioning of multiple micro-particles, irrespectively of their material properties. Compared to the standing theoretical proposal, our method keeps particles mobile, and we show that their precision manipulation is non-linearly accelerated via the multiplexing of temperature stimuli below the heat diffusion limit. The resulting flow fields are topologically rich and mathematically predictable. They represent unprecedented microfluidic control capabilities that are illustrated by the actuation of humanoid micro-robots with up to 30 degrees of freedom, whose motions are sufficiently well-defined to reliably communicate personal characteristics such as gender, happiness and nervousness. Our results constitute high-definition micro-fluidic manipulations with transformative potential for assembly, micro-manufacturing, the life sciences, robotics and opto-hydraulically actuated micro-factories. Feedback control of optically generated flows enables precise, dynamic particle assembly and complex micro-robotics.

DOI: 10.1038/s41377-024-01406-4

Source: https://www.nature.com/articles/s41377-024-01406-4

期刊信息

Light: Science & Applications《光:科学与应用》,创刊于2012年。隶属于施普林格·自然出版集团,最新IF:19.4

官方网址:https://www.nature.com/lsa/
投稿链接:https://mts-lsa.nature.com/cgi-bin/main.plex