中国海洋大学张弛团队报道了通过硫氰酸锌维数工程制备强紫外-可见-近红外二次谐波
精确调制基元的空间取向和连接模式,对于非线性光学(NLO)材料的某些至关重要的光学功能(特别是二次谐波发生(SHG)和光学带隙)至关重要。然而,人们尚未对高效宽带非线性光学材料的设计结构实现足够的控制。
利用维度增加可能导致的微观极化变化,该文中,研究人员首次提出了一种零维(0D)到三维(3D)的维度增加策略,以实现强宽带SHG响应。通过去除SHG无活性的[NH4]+抗衡阳离子和位于(NH4)2Zn(SCN)4·3H2O内相邻离散[Zn(SCN)4]构建块。
从(NH4)2Zn(SCN)4·3H2O到Zn(SCN)2的0D到3D维度工程,从紫外到近红外区域(SHG@300–1050nm)显著增强了SHG响应和高效的宽带活性(8×KH2PO4@1064 nm,前者c.f. 2 × β-BaB2O4 @ 380 nm带隙为4.18 eV, 30 × KH2PO4 @ 1064 nm, 后者2 × KTiOPO4 @ 2100 nm带隙为4.78 eV)。
理论计算和晶体结构分析表明,Zn(SCN)2类金刚石结构内的配位键连接的[Zn(SCN)4]构建块,是其巨大宽带SHG响应的原因。
附:英文原文
Title: Toward Strong UV–Vis–NIR Second-Harmonic Generation by Dimensionality Engineering of Zinc Thiocyanates
Author: Haijun Zhang, Xingxing Jiang, Yiran Zhang, Kaining Duanmu, Chao Wu, Zheshuai Lin, Jun Xu, Jinhu Yang, Zhipeng Huang, Mark G. Humphrey, Chi Zhang
Issue&Volume: October 7, 2024
Abstract: The precise modulation of the spatial orientations and connection modes of primitives is vital for certain critically important optical functions for nonlinear optical (NLO) materials (specifically, second-harmonic generation (SHG) and optical bandgap); however, we are yet to achieve a sufficient level of control for the designed construction of efficient broadband NLO materials. Exploiting the changes in microscopic polarization that may result from dimensional increase, we propose herein a zero-dimensional (0D)-to-three-dimensional (3D) dimensionality-increase strategy to realize strong broadband SHG responses for the first time. The novel 3D pseudo diamond-like Zn(SCN)2 has been synthesized by removing SHG-inactive [NH4]+ counter cations and H2O molecules that are located between the adjacent discrete [Zn(SCN)4] building blocks within the 0D (NH4)2Zn(SCN)4·3H2O. The 0D-to-3D dimensionality engineering, proceeding from (NH4)2Zn(SCN)4·3H2O to Zn(SCN)2, results in significantly enhanced SHG responses and efficient broadband activity (8 × KH2PO4 @ 1064 nm, 4.18 eV bandgap for the former c.f. 2 × β-BaB2O4 @ 380 nm, 30 × KH2PO4 @ 1064 nm, 2 × KTiOPO4 @ 2100 nm, 4.78 eV bandgap for the latter) from the UV to the NIR regions (SHG@300–1050 nm). Theoretical calculations and crystal structure analyses reveal that the coordination-bond-connected [Zn(SCN)4] building blocks within the diamond-like structure of Zn(SCN)2 are responsible for its giant broadband SHG responses.
DOI: 10.1021/jacs.4c09172
Source: https://pubs.acs.org/doi/abs/10.1021/jacs.4c09172
JACS:《美国化学会志》,创刊于1879年。隶属于美国化学会,最新IF:16.383
官方网址:https://pubs.acs.org/journal/jacsat
投稿链接:https://acsparagonplus.acs.org/psweb/loginForm?code=1000