近日,美国麻省理工学院的William D. Oliver&Ilan T. Rosen及其研究团队取得一项新进展。经过不懈努力,他们实现二维超导量子比特阵列中的合成磁矢量势。相关研究成果已于2024年10月30日在国际知名学术期刊《自然—物理学》上发表。
该研究团队利用超导量子模拟器模拟了电磁场中带电粒子的动力学。研究人员通过向所有量子比特施加连续调制信号,实现了一个广泛可调的合成磁矢势。
研究人员验证了该合成矢势符合电磁学所需的特性:空间变化的矢势打破了时间反演对称性,并产生了一个规范不变的合成磁场;而时间变化的矢势则产生了一个合成电场。他们证明霍尔效应——即在电磁场中传播的带电粒子发生横向偏转——在合成电磁场的存在下同样存在。
据悉,超导量子处理器由于硬件所固有的精确控制、快速操作和位点分辨读出能力,成为模拟量子仿真的一个引人注目的平台。耦合超导量子比特阵列根据玻色-哈伯德(Bose-Hubbard)模型,天然地模拟了相互作用粒子的动力学。然而,许多有趣的凝聚态物质现象只有在电磁场存在时才会出现。
附:英文原文
Title: A synthetic magnetic vector potential in a 2D superconducting qubit array
Author: Rosen, Ilan T., Muschinske, Sarah, Barrett, Cora N., Chatterjee, Arkya, Hays, Max, DeMarco, Michael A., Karamlou, Amir H., Rower, David A., Das, Rabindra, Kim, David K., Niedzielski, Bethany M., Schuldt, Meghan, Serniak, Kyle, Schwartz, Mollie E., Yoder, Jonilyn L., Grover, Jeffrey A., Oliver, William D.
Issue&Volume: 2024-10-30
Abstract: Superconducting quantum processors are a compelling platform for analogue quantum simulation due to the precision control, fast operation and site-resolved readout inherent to the hardware. Arrays of coupled superconducting qubits natively emulate the dynamics of interacting particles according to the Bose–Hubbard model. However, many interesting condensed-matter phenomena emerge only in the presence of electromagnetic fields. Here we emulate the dynamics of charged particles in an electromagnetic field using a superconducting quantum simulator. We realize a broadly adjustable synthetic magnetic vector potential by applying continuous modulation tones to all qubits. We verify that the synthetic vector potential obeys the required properties of electromagnetism: a spatially varying vector potential breaks time-reversal symmetry and generates a gauge-invariant synthetic magnetic field, and a temporally varying vector potential produces a synthetic electric field. We demonstrate that the Hall effect—the transverse deflection of a charged particle propagating in an electromagnetic field—exists in the presence of the synthetic electromagnetic field.
DOI: 10.1038/s41567-024-02661-3
Source: https://www.nature.com/articles/s41567-024-02661-3