当前位置:科学网首页 > 小柯机器人 >详情
用于哺乳动物细胞中翻译调控和治疗性生物计算的工程化poly(A)替代物
作者:小柯机器人 发布时间:2024/1/7 21:00:11

西湖大学Mingqi Xie,浙江省生物计算研究中心实验室Hui Wang和浙江大学医学院Jiawei Shao共同合作,近期取得重要工作进展。他们研究开发出了用于哺乳动物细胞中翻译调控和治疗性生物计算的工程化poly(A)替代物。相关论文于2024年1月4日发表在《细胞研究》杂志上。

研究人员提出了一种能够对真核生物翻译起始进行可编程控制的基因调控策略。通过切除靶基因的天然多腺苷酸(poly-A)信号并用含有RNA结合蛋白(RBP)特异性适配体的合成控制区取代它,帽依赖性翻译完全依赖于含有不同RBP的合成翻译起始因子(STIF),这些RBP被设计成与不同的eIF4F结合蛋白(eIFBP)有条件地结合。

这种模块化设计框架有助于各种基因开关和细胞内传感器的工程化,以响应许多用户定义的感兴趣的触发信号,证明哺乳动物细胞中转基因表达的严格控制、快速和可逆调节,以及与各种临床适用的体内基因治疗递送途径的兼容性。在两个动物模型中证明了治疗效果。为了举例说明需要按需药物分泌的疾病治疗,研究人员表明,由美国食品药品监督管理局(FDA)批准的药物grazoprevir触发的定制设计的基因转换可以有效控制糖尿病小鼠的胰岛素表达并恢复葡萄糖稳态。

对于需要即时感知和响应治疗程序的疾病,研究人员为各种亚细胞(错误)定位的蛋白质标记物(如癌症相关融合蛋白)创建了高度特异性的传感器,并表明基于翻译的蛋白质传感器可以单独使用,也可以与其它细胞状态分类策略结合使用,以创建治疗性生物计算机,驱动小鼠肿瘤细胞的自给自足的消除。

总之,这种设计策略在翻译调控方面表现出了前所未有的灵活性,并可能成为一类新型体内可编程基因疗法的基础。

附:英文全文

Title: Engineered poly(A)-surrogates for translational regulation and therapeutic biocomputation in mammalian cells

Author: Shao, Jiawei, Li, Shichao, Qiu, Xinyuan, Jiang, Jian, Zhang, Lihang, Wang, Pengli, Si, Yaqing, Wu, Yuhang, He, Minghui, Xiong, Qiqi, Zhao, Liuqi, Li, Yilin, Fan, Yuxuan, Viviani, Mirta, Fu, Yu, Wu, Chaohua, Gao, Ting, Zhu, Lingyun, Fussenegger, Martin, Wang, Hui, Xie, Mingqi

Issue&Volume: 2024-01-04

Abstract: Here, we present a gene regulation strategy enabling programmable control over eukaryotic translational initiation. By excising the natural poly-adenylation (poly-A) signal of target genes and replacing it with a synthetic control region harboring RNA-binding protein (RBP)-specific aptamers, cap-dependent translation is rendered exclusively dependent on synthetic translation initiation factors (STIFs) containing different RBPs engineered to conditionally associate with different eIF4F-binding proteins (eIFBPs). This modular design framework facilitates the engineering of various gene switches and intracellular sensors responding to many user-defined trigger signals of interest, demonstrating tightly controlled, rapid and reversible regulation of transgene expression in mammalian cells as well as compatibility with various clinically applicable delivery routes of in vivo gene therapy. Therapeutic efficacy was demonstrated in two animal models. To exemplify disease treatments that require on-demand drug secretion, we show that a custom-designed gene switch triggered by the FDA-approved drug grazoprevir can effectively control insulin expression and restore glucose homeostasis in diabetic mice. For diseases that require instantaneous sense-and-response treatment programs, we create highly specific sensors for various subcellularly (mis)localized protein markers (such as cancer-related fusion proteins) and show that translation-based protein sensors can be used either alone or in combination with other cell-state classification strategies to create therapeutic biocomputers driving self-sufficient elimination of tumor cells in mice. This design strategy demonstrates unprecedented flexibility for translational regulation and could form the basis for a novel class of programmable gene therapies in vivo.

DOI: 10.1038/s41422-023-00896-y

Source: https://www.nature.com/articles/s41422-023-00896-y

期刊信息

Cell Research:《细胞研究》,创刊于1990年。隶属于施普林格·自然出版集团,最新IF:20.057
官方网址:https://www.nature.com/cr/
投稿链接:https://mts-cr.nature.com/cgi-bin/main.plex