当前位置:科学网首页 > 小柯机器人 >详情
折纸电子器件可用于长期记录人体神经类器官和组装体的电生理数据
作者:小柯机器人 发布时间:2024/1/24 13:53:39

美国斯坦福大学Bianxiao Cui等研究人员合作发现,折纸电子器件可用于长期记录人体神经类器官和组装体的电生理数据。2024年1月22日,《自然—生物技术》杂志在线发表了这项成果。

受折纸艺术的启发,研究人员开发出了柔性电子元件,可从二维过渡到三维的篮状结构,具有螺旋或蜂巢图案,以适应悬浮液中类器官的长期培养。研究人员展示了这个被命名为折纸电子器件(KiriE)的平台,它能与大脑皮层类器官集成并实现长达120天的慢性记录,同时保留其形态、细胞结构和细胞组成。

研究人员展示了KiriE与光遗传学和药理学操作的整合,以及与遗传疾病相关的表型建模。此外,KiriE还能在光遗传刺激后捕捉组装体中的皮层纹状体连通性。因此,KiriE将有助于研究神经系统组装背后的疾病和活动模式。

据了解,要充分发挥类器官和组装体在模拟神经发育和疾病方面的潜力,就必须改进长期、微创记录电活动的方法。目前的技术,如贴片钳、穿透性微电极、平面电极阵列和基底附着柔性电极,都无法对悬浮状态下的类器官进行长期记录,而这是保存结构所必需的。

附:英文原文

Title: Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids

Author: Yang, Xiao, Forr, Csaba, Li, Thomas L., Miura, Yuki, Zaluska, Tomasz J., Tsai, Ching-Ting, Kanton, Sabina, McQueen, James P., Chen, Xiaoyu, Mollo, Valentina, Santoro, Francesca, Paca, Sergiu P., Cui, Bianxiao

Issue&Volume: 2024-01-22

Abstract: Realizing the full potential of organoids and assembloids to model neural development and disease will require improved methods for long-term, minimally invasive recording of electrical activity. Current technologies, such as patch clamp, penetrating microelectrodes, planar electrode arrays and substrate-attached flexible electrodes, do not allow chronic recording of organoids in suspension, which is necessary to preserve architecture. Inspired by kirigami art, we developed flexible electronics that transition from a two-dimensional to a three-dimensional basket-like configuration with either spiral or honeycomb patterns to accommodate the long-term culture of organoids in suspension. Here we show that this platform, named kirigami electronics (KiriE), integrates with and enables chronic recording of cortical organoids for up to 120days while preserving their morphology, cytoarchitecture and cell composition. We demonstrate integration of KiriE with optogenetic and pharmacological manipulation and modeling phenotypes related to a genetic disease. Moreover, KiriE can capture corticostriatal connectivity in assembloids following optogenetic stimulation. Thus, KiriE will enable investigation of disease and activity patterns underlying nervous system assembly.

DOI: 10.1038/s41587-023-02081-3

Source: https://www.nature.com/articles/s41587-023-02081-3

期刊信息

Nature Biotechnology:《自然—生物技术》,创刊于1996年。隶属于施普林格·自然出版集团,最新IF:68.164
官方网址:https://www.nature.com/nbt/
投稿链接:https://mts-nbt.nature.com/cgi-bin/main.plex