英国曼彻斯特大学R. R. Nair等研究人员合作揭示MoS2膜中H依赖的透水率转换及其记忆。相关论文于2023年4月19日在线发表在《自然》杂志上。
研究人员展示了分子通过智能相变MoS2膜对外部pH值的记忆效应和刺激性调节的运输。结果表明,水和离子在1T′ MoS2膜上的渗透遵循一种依赖于pH值的滞后现象,其渗透率会以几个数量级的方式切换。研究人员确定这种现象是MoS2的1T′相所特有的,这是由于表面电荷和可交换离子的存在。研究人员进一步证明了这种现象在自主伤口感染监测和pH值依赖的纳米过滤中的潜在应用。这项工作加深了对纳米尺度上水传输机制的理解,并为开发智能膜开辟了一条途径。
据了解,分子物种跨越不同障碍的智能运输对各种生物功能至关重要,并且是通过生物膜的独特性能实现的。智能运输的两个基本特征是:(1)适应不同的外部和内部条件;(2)记忆以前的状态。在生物系统中,这种智能的最常见形式表现为滞后性。尽管过去几十年在智能膜方面取得了许多进展,但创造一种具有稳定滞后行为的合成膜用于分子运输仍然是一个挑战。
附:英文原文
Title: pH-dependent water permeability switching and its memory in MoS2 membranes
Author: Hu, C. Y., Achari, A., Rowe, P., Xiao, H., Suran, S., Li, Z., Huang, K., Chi, C., Cherian, C. T., Sreepal, V., Bentley, P. D., Pratt, A., Zhang, N., Novoselov, K. S., Michaelides, A., Nair, R. R.
Issue&Volume: 2023-04-19
Abstract: Intelligent transport of molecular species across different barriers is critical for various biological functions and is achieved through the unique properties of biological membranes1,2,3,4. Two essential features of intelligent transport are the ability to (1) adapt to different external and internal conditions and (2) memorize the previous state5. In biological systems, the most common form of such intelligence is expressed as hysteresis6. Despite numerous advances made over previous decades on smart membranes, it remains a challenge to create a synthetic membrane with stable hysteretic behaviour for molecular transport7,8,9,10,11. Here we demonstrate the memory effects and stimuli-regulated transport of molecules through an intelligent, phase-changing MoS2 membrane in response to external pH. We show that water and ion permeation through 1T′ MoS2 membranes follows a pH-dependent hysteresis with a permeation rate that switches by a few orders of magnitude. We establish that this phenomenon is unique to the 1T′ phase of MoS2, due to the presence of surface charge and exchangeable ions on the surface. We further demonstrate the potential application of this phenomenon in autonomous wound infection monitoring and pH-dependent nanofiltration. Our work deepens understanding of the mechanism of water transport at the nanoscale and opens an avenue for the development of intelligent membranes.
DOI: 10.1038/s41586-023-05849-4
Source: https://www.nature.com/articles/s41586-023-05849-4
Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:69.504
官方网址:http://www.nature.com/
投稿链接:http://www.nature.com/authors/submit_manuscript.html