尽管立体糖苷在生命和材料科学中很重要,但其有效构建仍然是一个挑战。如果糖基化方法像钯(Pd)催化的交叉偶联一样可靠和模块化,那么碳水化合物功能的研究将取得进展。然而,Pd催化在形成sp2杂化的碳中心方面表现出色,而糖基化主要建立sp3杂化的C–O键。
该文中,研究人员报道了一种糖基化平台,通过钯催化的SN2从苯酚转移到稳定的含芳基碘化物的糖基硫化物。关键的Pd(II)氧化加成中间体从芳基化试剂(Csp2亲电试剂)分化为糖基化试剂。该方法继承了交叉耦合反应的许多优点,包括操作简单和官能团耐受。它保留了各种底物的SN2机制,并适用于商业药物和天然产物的后期糖基化。
附:英文原文
Title: Palladium catalysis enables cross-coupling–like SN2-glycosylation of phenols
Author: Li-Fan Deng, Yingwei Wang, Shiyang Xu, Ao Shen, Hangping Zhu, Siyu Zhang, Xia Zhang, Dawen Niu
Issue&Volume: 2023-11-24
Abstract: Despite their importance in life and material sciences, the efficient construction of stereo-defined glycosides remains a challenge. Studies of carbohydrate functions would be advanced if glycosylation methods were as reliable and modular as palladium (Pd)-catalyzed cross-coupling. However, Pd-catalysis excels in forming sp2-hybridized carbon centers whereas glycosylation mostly builds sp3-hybridized C–O linkages. We report a glycosylation platform through Pd-catalyzed SN2 displacement from phenols toward bench-stable, aryl-iodide–containing glycosyl sulfides. The key Pd(II) oxidative addition intermediate diverges from an arylating agent (Csp2 electrophile) to a glycosylating agent (Csp3 electrophile). This method inherits many merits of cross-coupling reactions, including operational simplicity and functional group tolerance. It preserves the SN2 mechanism for various substrates and is amenable to late-stage glycosylation of commercial drugs and natural products.
DOI: adk1111
Source: https://www.science.org/doi/10.1126/science.adk1111
Science:《科学》,创刊于1880年。隶属于美国科学促进会,最新IF:63.714
官方网址:https://www.sciencemag.org/
投稿链接:https://cts.sciencemag.org/scc/#/login