近期,南方科技大学生物医学工程系副教授张明明团队在创新康复机器人系统领域取得系列进展,他们创建了多人协作交互方法与创新康复系统,为相关领域发展奠定理论基础。相关的两项研究成果接连发表于《IEEE 机器人汇刊》。
当前的多用户人机交互研究主要关注机器人控制系统自身的稳定性,往往忽视了真实协作情境中“人与人”之间的相互影响。如何在承认并融入操作者主动交互行为的前提下,维持系统稳定性并实现控制架构的可扩展性,成为一项关键挑战。
为应对这一挑战,研究人员创新性地提出了“个人交互环境”(IIE)框架。该框架通过隔离可能破坏系统无源性的交互因素,使每个人机交互子系统的控制设计能独立进行,从而在根本上提升系统的可扩展性。在IIE的架构内,研究人员进一步识别出由合作者主动行为所引发的无源性破坏因素,并提出一种新型“增强能量储备控制器”。该控制器具备功率调节与时变增益机制,在确保每个IIE单元满足无源性约束的同时,能有效抑制对触觉渲染精度的负面影响,从而在系统稳定性与交互真实感之间实现了更优平衡。
实验证明,在存在操作者主动行为的多人触觉交互场景中,该系统不仅能保持稳定可靠的触觉渲染,相较于现有方法还展现出更优的任务可重复性与渲染精度,成功实现了“人际交互耦合影响下的无源性保持”与“高精度触觉渲染”两者的协同推进。
该研究不仅为多用户触觉协作系统提供了可扩展、鲁棒的控制解决方案,更进一步推动了多用户人机交互研究范式向“以人与人互动为中心”方向的发展,为未来远程协作、联合训练等领域的发展奠定了理论与技术基础。
在另一项研究中,针对当前机器人辅助康复领域难以实现个体化康复效果的难题,研究人员提出了一种面向踝关节康复的“医生级”模仿学习与自适应控制新方法,使康复机器人不仅能“模仿医生动作”,还具备“像医生一样调整策略”的能力。
他们在该项研究中提出了一种双层核化运动基元模仿学习框架,有效解决了传统模仿学习在轨迹调整过程中易产生抖动、变形和过拟合的问题,使机器人训练过程更加自然、连续和贴近真实临床操作,为康复机器人从“固定程序执行”迈向“融合医生经验与患者反馈的智能决策”提供了新的技术范式,对推动智能康复设备在临床中的精准应用和规模化推广具有重要意义。
相关论文信息:https://ieeexplore.ieee.org/document/11342379
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。