|
|
中国科学技术大学、加拿大魁北克大学等三位专家讲述信息光学技术 |
|
直播时间:2024年9月24日(周二)20:00-22:00
直播平台:
科学网APP
https://weibo.com/l/wblive/p/show/1022:2321325082137518014469
(科学网微博直播间链接)
科学网微博
科学网视频号
北京时间9月24日晚八点,iCANX Youth Talks第七十四期邀请到了中国科学院安徽光学精密机械研究所研究员孙友文、中国科学技术大学特任教授胡晓敏、加拿大魁北克大学副教授梁晋阳担任主讲嘉宾,中国科学技术大学特任教授侯志博、中国科学院微电子所研究员杨妍担任研讨嘉宾,中国科学技术大学教授孙海定担任主持人,期待你一起加入这场知识盛宴。
【嘉宾介绍】
孙友文
中国科学院安徽光学精密机械研究所
量子光谱大气探测技术体系
【Abstract】
Environmental optical detection technology, by analyzing the spectral absorption characteristics of environmental media, can rapidly and sensitively detect the spatiotemporal distribution of atmospheric components, playing a key role in understanding and ultimately solving environmental issues. Current environmental optics still relies on traditional photoelectric detection technology systems, where light sources and optical signal detection methods are based on the collective effects of photons, which cannot reach the single-quantum level, resulting in poor detection performance in the presence of extremely weak light signals and high noise backgrounds. By integrating single-quantum measurement technology with environmental optical technology, and leveraging the nonlocality and strong correlation of quantum entanglement light sources, we propose a quantum spectral precision measurement technology system that integrates quantum light sources and quantum detection. This system is expected to break through the technological bottlenecks of classical optical measurements, significantly enhance detection sensitivity, accuracy, spatial and temporal resolution, and achieve spectral detection close to the quantum limit, thus promoting a leapfrog development in environmental optical technology.
环境光学探测技术通过解析环境介质的光谱吸收特征,可快速、高灵敏探测大气成分的时空分布,在认识、理解和最终解决环境问题的过程中发挥了关键作用。现有的环境光学仍依赖于传统光电探测技术体系,光源和光信号探测手段均基于光子集体效应,无法达到单个量子水平,在极弱光信号和高噪音背景下的探测性能低下。我们将单量子测量技术与环境光学技术交叉融合,基于量子纠缠光源的非局域性和强关联性,提出一种集量子光源和量子探测于一体的量子光谱精密测量技术体系,有望突破经典光学测量的技术瓶颈,大幅提升探测灵敏度、准确度、时空分辨率等性能,实现接近于量子极限的光谱探测,推进环境光学技术的跨越式发展。
【BIOGRAPHY】
Prof. Youwen Sun is currently a professor at Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences. His research interests include Optical (Environmental Optics, Quantum Optics), Atmospheric Physics (Atmospheric Detection Technology), Computer Technology (Multi-source Data Fusion and Information Processing), Automation Control (Development of Environmental Monitoring Instruments). He has published more than 80 high rank papers and led 16 research projects. He has been granted by the National Science Fund for Excellent Young Scholars and selected as a member of Youth Promotion Association of Chinese Academy of Sciences. He graduated with a Ph.D. from the University of Chinese Academy of Sciences in 2013 and has since worked at the Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, successively serving as a research assistant professor, associate professor, and professor.
孙友文,博士,博士生导师,中国科学院安徽光学精密机械研究所研究员,国家优秀青年科学基金和安徽省杰出青年科学基金获得者、中国科学院青年创新促进会会员及优秀会员、中国科学院青年创新促进会信息与管理学部委员。研究方向包括光学(环境光学、量子光学)、大气物理学(大气探测技术)、计算机技术(多源数据融合与信息处理)、自动化控制(环境监测仪器研制)。已在国内外权威期刊上发表SCI论文80余篇,授权发明专利10余项,参编专著2本。担任国家重点研发计划十三五“大气污染成因与控制技术研究”专项中“监测预警预报技术”方向的项目集成负责人;主持过国家重点研发计划项目和课题、国家自然科学基金优青和安徽省杰青等项目16项。
胡晓敏
中国科学技术大学
从二维到高维非局域性
【ABSTRACT】
High dimensional quantum information processing can encode more information in a single quantum system by utilizing a larger Hilbert space, thereby improving the efficiency of data transmission. High dimensional systems have stronger robustness to noise and errors, which makes them more secure and reliable in quantum computing and quantum communication. These advantages make high-dimensional quantum technology show great potential in complex quantum networks and secure communication. This report explores non-locality phenomena from two-dimensional to high-dimensional. Firstly, quantum entanglement and EPR paradox were introduced, and Bells inequality and its experimental verification were discussed, including methods to eliminate experimental loopholes. Analyzed the research progress of high-dimensional non-locality, especially the application and experimental results of Bell inequality in high-dimensional systems. Finally, the experimental challenges and solutions to the problem of multi body high-dimensional non-locality were introduced, and the latest research results in multi photon high-dimensional entangled states were presented. The report summarizes the potential applications of these studies in quantum information tasks.
高维量子信息处理通过利用更大的希尔伯特空间,能够在单个量子系统中编码更多信息,从而提高了数据传输的效率。高维系统对噪声和误差具有更强的鲁棒性,这使得它们在量子计算和量子通信中具备更高的安全性和可靠性。这些优势使得高维量子技术在复杂量子网络和安全通信中展现出巨大的潜力。本报告探讨了从二维到高维的非局域性现象。首先介绍了量子纠缠和EPR悖论,讨论了贝尔不等式及其实验验证,包括消除实验漏洞的方法。分析了高维非局域性的研究进展,特别是贝尔不等式在高维系统中的应用和实验结果。最后,针对多体高维非局域性的问题,介绍了实验上的挑战和解决方案,并展示了在多光子高维纠缠态中的最新研究成果。报告总结了这些研究在量子信息任务中的潜在应用。
【BIOGRAPHY】
Xiao-Min Hu, Special Professor at the University of Science and Technology of China. Mainly engaged in experimental research on quantum optics, quantum networks, and single photon quantum sensing, dedicated to utilizing high-dimensional quantum information processing processes to construct high-dimensional quantum networks with superior performance. Innovatively applying new technologies such as polarization path coupling, multi-core fiber dispersion compensation, and entanglement assistance to construct a novel high-dimensional quantum network, 32 dimensional entangled state preparation, 11km high-dimensional entanglement distribution, and high-dimensional quantum teleportation have been achieved, significantly improving key indicators such as fidelity, dimensionality, and detection capability of high-dimensional entanglement, reaching the international advanced level. On this basis, new methods such as subspace encoding and multi exit measurement are combined to demonstrate the advantages of high-dimensional quantum network information processing. In the field of single photon sensing, innovative use of silicon nitride microcavity structure is employed to construct a frequency locked Doppler single photon wind radar, based on an upconversion single photon precision imaging system. Published 27 SCI papers and cited 1700 times by Google Scholar. In recent years, I have published 9 PRL articles, 1 Nature Reviews Physics article, 1 Science Advances article, 1 Optica article, and 2 Science Bulletins as the first author. The research results have been positively evaluated by Nobel laureates and IEEE fellows. The achievement was selected as a major scientific and technological progress in the field of information and communication by the China Society of Communications in 2021. Received funding from the Excellent Youth Fund of the National Natural Science Foundation of China.
胡晓敏,中国科学技术大学特任教授。主要从事量子光学、量子网络和单光子量子传感的实验研究,致力于利用高维量子信息处理过程,构建性能更加优越的高维量子网络。创新的将偏振路径耦合,多芯光纤色散补偿和纠缠辅助等新技术应用于构建新型高维量子网络,实现了32维纠缠态制备,11km高维纠缠分发和高维量子隐形传态,显著提高了高维纠缠的保真度,维度以及探测能力等关键指标,达到国际先进水平。在此基础上,结合子空间编码,多出口测量等新方法,展示高维量子网络信息处理优势。在单光子传感领域,创新的使用氮化硅微腔结构,构建频率锁定的多普勒单光子测风雷达,基于上转换单光子精密成像系统。已发表SCI论文27篇,谷歌学术引用1700次。近年来以第一作者身份发表PRL 9篇,Nature reviews physics 1篇,Science Advances 1篇,Optica1篇,Science Bulletin 2 篇。研究成果被诺贝尔奖获得者,IEEE会士正面大段评价。成果入选2021年度中国通信学会信息通信领域重大科技进展。
梁晋阳
加拿大魁北克大学
基于线阵图像识别的光栅位移测量技术研究进展
【ABSTRACT】
Visualizing transient events in the durations of their occurrences (i.e., real time) is indispensable to understanding many physical, chemical, and biological processes. Among existing methods, real-time ultrafast imaging based on coded optical streaking has received increasing attention because of its high image quality, high adaptability, and broad applicability. In this talk, I will review the working principles and limitations in representative ultrafast imaging modalities. Then, I will focus the discussion on three research directions in my Laboratory of Applied Computational Imaging in the past three years. First, I will present compressed optical-streaking ultrahigh-speed photography for the advanced characterization of rare-earth-doped nanoparticles for biomedical and information security applications [Nat. Commun. 12, 6401 (2021); Adv. Sci. 11, 2305284 (2024)]. Second, I will discuss how coded optical double-streaking can speed up single-pixel imaging to 12,000 frames per second [Nat. Commun. 13, 7879 (2022)] and coded-aperture temporal imaging to >100 trillion frames per second [Nat. Commun. 15, 1589 (2024)]. Finally, I will show how the dynamic optical diffraction, generated by the microsecond transition between two masks loaded onto a programmable grating, can be used as a new gating mechanism for ultrafast mapping photography [Optica 10, 1223 (2023)].
就必须对瞬态事件的发生过程进行可视化可以助力了解许多物理、化学和生物过程。在现有的方法中,基于编码光学条纹的实时超快成像因其图像质量高、适应性强、适用性广而受到越来越多的关注。在本讲座中,我将回顾具有代表性的超快成像模式的工作原理和局限性。然后,我将重点讨论我所在的应用计算成像实验室近三年来的三个研究方向。首先,我将介绍压缩光学条纹超高速摄影对稀土掺杂纳米粒子的发光寿命表征以及其在生物医学和信息安全应用 [Nat. Commun. 12, 6401 (2021); Adv. Sci. 11, 2305284 (2024)]。其次,我将讨论双编码光学扫描如何将单像素成像速度提高到每秒 12,000 帧 [Nat. Commun. 13, 7879 (2022)]。最后,我将展示如何将数字微镜的微秒转换所产生的动态光学衍射作为超快测绘摄影的新门控机制 [Optica 10, 1223 (2023)]。
【BIOGRAPHY】
Dr. Jinyang Liang is an Associate Professor at the Institut National de la Recherche Scientifique (INRS) – Université du Québec. He holds Canada Research Chair in Ultrafast Computational Imaging (Tier II). He directs the Laboratory of Applied Computational Imaging (LACI). His research interests cover ultrafast imaging, high-precision laser beam shaping, optical physics, and biophotonics. He has published >120 journal papers and conference proceedings and has applied for >25 U.S./Canada patents on ultrafast optical imaging technologies. He is a Senior Member of Optica and SPIE. He serves as an Associate Editor of CLP/Optica’s Photonics Research and IEEE Transactions on Computational Imaging and as a Senior Editor of Springer’s PhotoniX. He received many awards, including the 2024 Early Career Investigator Award from the Microscopy Society of Canada, the 2019 Young Scientist Prize from IUPAP, and the 2017 Educational Award–Gold from Edmund Optics. He received his Ph.D. degree in Electrical Engineering from the University of Texas at Austin in 2012. From 2012 to 2017, he was a postdoctoral trainee at Washington University in St. Louis and the California Institute of Technology.
梁晋阳,加拿大魁北克大学国家科学研究院(INRS)副教授并担任加拿大超快计算成像研究讲座教授(Canada Research Chair, Tier II)和INRS纳米生物光子学讲席教授。他的研究兴趣涵盖超快成像、高精度激光束整形、光学物理和生物光子学。他已发表超过120篇期刊论文和会议论文集,并就超快光学成像技术申请了超过25项美国/加拿大专利。他是Optica和SPIE的高级会员。他是 Photonics Research 和 IEEE Transactions on Computational Imaging 的副编辑,也是 PhotoniX 的高级编辑。梁教授获得过许多奖项,包括加拿大显微镜学会颁发的 2024年早期职业研究者奖、国际纯粹和应用物理学联合会颁发的 2019年青年科学家奖以及 Edmund Optics 颁发的2017年教育奖-金奖。梁教授于2012年获得德克萨斯大学奥斯汀分校电子工程博士学位。2012年至2017 年,他在圣路易斯华盛顿大学和加州理工学院博士后研究。
【主持人】
孙海定
中国科学技术大学
【研讨嘉宾】
侯志博
中国科学技术大学
杨妍
中国科学院微电子所
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。