作者:冯丽妃 来源: 中国科学报 发布时间:2023/3/24 9:00:53
选择字号:
打开一个基因中的“藏粮密码”
主效耐碱基因可使谷物增产约20%

 

吉林白城盐碱地经过改良后种植耐碱水稻。受访者供图

■本报记者 冯丽妃

“我国人多地少,在工业化和城镇化发展的背景下,确保18亿亩耕地红线,粮食安全生产存在巨大压力。如何破题?”

“把边际土地,特别是盐碱地的作用发挥出来,就能大幅缓解这个压力。”3月22日,中国科学院院士李家洋在中国科学院遗传与发育生物学研究所(以下简称遗传发育所)举办的成果发布会上说。

通过7年联合攻关,遗传发育所谢旗团队与中国农业大学于菲菲团队、华中农业大学欧阳亦聃团队联合十家单位,以高粱为材料,打开主效耐碱基因AT1的“藏粮密码”。他们的研究表明,该基因可在中重度盐碱地显著提升高粱、水稻、小麦、玉米和谷子等作物的产量。相关研究结果3月24日发表于《科学》和《国家科学评论》。

“这项研究在改良盐碱地综合利用中具有重大应用前景。”中国工程院院士、中国作物学会理事长万建民评价。

一位《科学》国际审稿人也评价称,这项工作是“农业生产方面的一个重大突破”。

给盐碱地研究“补短板”

3月初,联合国粮食及农业组织(FAO)发布报告称,当前全球45个国家急需粮食援助,数百万人陷入严重饥饿。

据FAO数据,截至2015年,全球耕地面积达42亿公顷,另外还有超过10亿公顷的盐渍化土壤尚未被有效利用,它们为全球粮食增产提供了空间。而如何释放盐碱地的增产潜力,一直是国际前沿和重点科学问题。

截至目前,全球已有大量适用于盐碱地的种质资源创新研究。然而,这方面的研究仍存在极大的“短板”。

“大家通常说的‘盐碱地’其实可分为盐化土壤、碱化土壤两种主要类型。”论文通讯作者、遗传发育所研究员谢旗对《中国科学报》说,其中前者约占全球盐渍化土地的40%,后者则占60%左右。

虽然目前全球植物耐盐研究已取得丰硕成果,但对植物耐碱机制的了解仍然很少。作物耐盐相关论文至今已有22600余篇,而耐碱相关研究仅有400余篇。

“耐盐”与“耐碱”的研究落差缘何如此之大?其中一个难题是实验室模式植物,如拟南芥,通常并非起源于盐碱地,因此缺乏耐碱遗传适应性。这让科研人员无法深入探索作物的耐碱机制,更加难以将研究结果匹配到生产中。

什么才是关键的耐碱作物材料?谢旗把研究目标聚焦在高粱上。

这种谷物起源于非洲中部高盐碱的萨赫勒地区,在长期进化中形成了丰富的耐碱性遗传资源。过去20多年,谢旗和团队已经培育出6个甜高粱国家登记品种,在我国盐碱等贫瘠土地上推广种植50余万亩,为脱贫攻坚及乡村振兴提供了科技支撑。

从2015年起他与于菲菲等合作,对从全球各地收集到的350多个高粱种质资源进行全基因组测序,将其与公共基因库的相关信息反复进行比对,从中选取潜在的耐碱基因。他们还利用基因编辑技术对野生高粱进行编辑,并结合大田生长情况,找到一个与作物产量呈负相关的主效耐碱基因AT1。

“这几株是野生型,那几株是突变株。”谢旗指着电脑显示器上的对照图对《中国科学报》说。对比两幅图,可以明显看出敲除AT1后的高粱株高更高、叶子更绿。

据介绍,盐碱化土壤主要由氧化钠或氢氧化钠导致。实验室中通常用这两种化合物调节系统的碱强度,这容易导致pH值变化大、不稳定,使实验无法重复。为克服这一问题,谢旗团队专门从宁夏挖了2吨盐碱土运到北京做实验,以保证研究结果的可靠性。

知其然,还要知其所以然。为了解该基因耐碱性的机制,谢旗与中国科学院生物物理研究所研究员陈畅合作,先后利用哺乳动物细胞和作物系统发现在高盐碱胁迫中,AT1可通过调控水通道蛋白的磷酸化来调节其在逆境中的活性,并将逆境中产生的活性氧物质(ROS)泵到细胞外,降低过氧化应激。

“简单来说,碱主要会引起细胞的氧化还原应激,让细胞中的DNA和蛋白变性,比如ROS过多会导致细胞损伤或死亡。而敲除AT1后可以使细胞中的ROS降低。”陈畅解释,这使研究团队首次揭示了作物耐盐碱的分子机制。

从一次邂逅到一场联合攻关

2019年,一次出差中谢旗与李家洋在机场巧遇。交谈中,谢旗提到正在开展的耐盐碱研究已经进入功能验证阶段,可能会是一个重要发现。他发现AT1是水稻粒形调控基因GS3的同源基因(一个共同祖先在不同物种中遗传的基因)。

李家洋一直在通过水稻研究分子设计育种,他和团队创制的“中科发”804等系列水稻中都含有GS3这一基因。两人当即敲定合作。

研究团队进一步与华中农业大学张启发院士等合作,确认了AT1/GS3基因在水稻和玉米中也能调控对碱的耐受性,相关代谢途径在不同作物中是保守的。他们把实验室搬到了吉林大安,那里的盐碱地pH值可以达到9.17。他们发现,水稻可实现年增产22.4%~27.8%,表现极其优异。

研究者还在宁夏平罗盐碱地(pH9.10,盐6‰)对高粱、谷子、玉米等作物进行了大田试验。他们发现,用基因剪刀“剪掉”AT1基因能够使高粱全株生物量(青贮饲料用)增加近30.5%、籽粒增产20.1%;可让谷子增产19.5%;能显著提高玉米、小麦在盐碱地的存活率。

《科学》国际审稿人评价称,这项工作揭示了禾本科作物的一个重要保守生物学机制,是一项重大发现。

“夯实粮食安全根基,要从源头上加强种质资源的创新利用研究。这项研究是从基础研究着手解决实际问题的一个典型案例。”中国科学院院士种康评价。

“一个基因改变一个产业”

从挖掘分子机理到多个地点、多种作物联合攻关,新研究证明了AT1基因的调控机制在主要粮食作物中的保守性,也说明了其对于相关作物增产的“普适性”。

多位出席发布会的专家表示,这项研究对我国乃至全球粮食安全意义重大。

据国家统计局数据,2021年我国人均粮食占有量已达到483公斤,高于国际公认的400公斤安全线。但同年,我国累计进口粮食创历史新高,达到1.6亿吨,占当年粮食产量的24%。

与会专家表示,我国有11.7亿亩的边际土地,其中包括5亿亩左右的盐碱地,这为我国粮食增产提供了空间。

在全球层面,谢旗也算了一笔账:如果全球20%的盐碱地利用该基因,每年可增产至少2.5亿吨粮食。

目前研究团队已与先正达集团合作,为该基因申请了国际专利。

当前,科技界对于基础与应用研究孰重孰轻仍有许多争论。在李家洋看来,基础与应用研究是一个统一体的两个基础面。“基础研究需要为应用提供源泉,应用研究要为基础研究提供出口,两者相辅相成。”他说,一项基础研究从发现一个重要原理或机制到走向应用是一个创新链条,两者相互结合才能持续推动解决相关社会问题,满足国家重大需求。

据悉,这项研究是在中国科学院前瞻性布局科技先导专项(A类)“种子精准设计与创造”专项“环境智能响应性状形成的分子基础”课题支持下取得的重要突破。该专项旨在针对我国新时期粮食安全等重大战略需求,引领分子精准设计育种技术,加速推进新绿色革命。

“这项研究涉及多种农作物,工作量巨大。研究团队通力合作,花费了7年时间才找到这个重要的耐碱位点。这种面对困难持之以恒的研究实践体现出的就是科学家精神。”遗传发育所前所长、研究员陈受宜说。

“朋友碰到一块儿会聊很多事,有时并不是科学上的事,但每次碰到谢旗,他总是唠叨那些高粱的事,每次都很兴奋。”南方科技大学教授朱健康说,“科学家有这种精神和对科学浓厚的兴趣,才能坚持这么多年,做出这么好的成果。”

朱健康表示,这项研究已经在基础理论上取得重要突破。他期待未来能够看到“通过一个基因改变一个产业”,让相关研究在百万亩,甚至千万亩盐碱地上落地应用。

相关论文信息:

https://doi.org/10.1126/science.ade8416

https://doi.org/10.1093/nsr/nwad075

《中国科学报》 (2023-03-24 第1版 要闻)
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
考研复试,导师心仪这样的学生! 地球刚刚经历最热2月
脂肪沉积相关研究取得重要进展 40亿年前生命如何产生?室温水中找答案
>>更多
 
一周新闻排行
 
编辑部推荐博文