作者:张双虎 李晨阳 黄辛 来源:中国科学报 发布时间:2022/12/6 11:00:27
选择字号:
近朱者赤,细胞如何被邻居影响?
——科学家建立新技术揭示细胞间相互作用

 

论文投稿几个月后,被审稿人打了回来,随之而来的是一篇措辞犀利的评价。但论文的共同第一作者、中科院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)副研究员赵欢并不感到气馁。

“事实上,论文刚投出去,周斌老师(中科院分子细胞科学卓越创新中心研究员)就意识到问题了,我们已经开始着手完善这项工作。”赵欢说。

不过,他们没有料到,这一完善,就又是3年艰苦攻关。

50b1e61bda727190151bfaf57e881e4.jpg

周斌         受访者供图

12月2日,这篇论文发表在国际顶级学术期刊《科学》上。该团队十年磨一剑,开发出可以捕捉体内细胞间相互作用,并能够永久追踪邻近细胞的创新研究工具——邻近细胞遗传学技术。

这项技术被同行评价为“倚天剑”,有望为发育生物学、肿瘤学等众多领的研究提供一个强大工具。

生命体内,细胞之间如何“交往”?

细胞之间的相互作用对生物生长发育和器官功能维持至关重要。但这些精妙的过程都发生在复杂的体内环境中,科学家很难观测到,更不用说开展研究了。

2010年,周斌完成哈佛大学医学院的博士后研究工作回国,萌生了开展“邻近细胞”研究的想法。

就像人一样,细胞也会受到“邻居”的显著影响。同样的细胞处在不同环境下,与不同的细胞群为邻,形态结构和生理功能都会表现出不同特征,甚至它们的命运也会因环境而变化。

这种奇妙的现象,让周斌深深着迷。过去十多年间,他指导学生进行了一系列遗传示踪研究,期间取得过一些进展,但那些研究都是利用传统型遗传示踪技术,只能针对细胞自身进行遗传操作。这些研究显然无法满足科研人员的求知欲。很多年前,该实验室就有不少人尝试在体内开展对邻近细胞遗传操作的研究。他们为此建立了一套实验系统,并且进行多次优化改造。

“但前3年基本都失败了。”周斌说,“直到后来,我们另辟蹊径,开始尝试将合成生物学的方法引进来。确切地说,是人工合成出一条全新的细胞通路——Synthetic Notch(SynNotch) ,从而把生物体内两个邻近细胞的相互接触转变为可以研究的遗传信号。”

细胞迁移改变细胞互作.jpg

细胞迁移改变细胞互作示意         受访者供图

十年磨把“倚天剑”

由于周斌长期从事与心脏发育相关的研究,对心血管系统比较了解,团队决定以此为切入点开展研究。他们把心脏中心肌细胞和内皮细胞作为主要研究对象,将心肌细胞作为SynNotch信号发送细胞,内皮细胞作为SynNotch信号接收细胞,分别构建了相关的工具小鼠。

这是一种非常精巧的实验设计。当心肌细胞和内皮细胞接触或分开时,会产生不同的遗传信号表现,从而反映细胞之间的实时接触信息。

2018年,团队里的博士后张少华(本文共同第一作者)用实验初步验证了体内进行邻近细胞遗传操作的可行性。这个重大突破,一时间让大家“群情激昂”。

接下来,他们又进一步完善了这个系统,实现了永久性的示踪标记。

通过这套技术,他们发现了很多有趣的生命现象:心脏内皮细胞会在胚胎发育过程中迁移到肝脏,转变成为肝脏特有的肝血窦内皮细胞,对维持肝脏的正常功能可能具有重要作用。

在肿瘤发生过程中,肿瘤血管内皮细胞会迁移到肿瘤外包膜。这部分迁移到肿瘤外包膜的血管内皮细胞仍然具有典型的转移和浸润、促血管生成以及炎症反应等特征,说明细胞进入新环境后,最初环境赋予细胞的影响可能仍然存在。

“这些结果,展示了体内细胞令人惊叹的互作过程。”周斌说,“这也提示我们,细胞间的相互作用有着很大的应用前景。比如对某个细胞进行改造,然后植入体内,让影响它周围细胞,从而达到基因改造或疾病治疗的目标。又比如,弄清肿瘤细胞转移过程中与其他器官细胞的相互作用规律,就有可能开发出干预手段,阻断癌症的转移。”

都说“十年磨一剑”。在中科院分子细胞卓越中心主任刘小龙看来,周斌这是磨了一把“倚天剑”,未来有望解决更多复杂的生命科学问题。

中国科学院院士李林则说:“许多重要的科学发现,往往得益于关键技术的创新。周斌团队开发的这种工具鼠,对生命现象做出的‘实时、定量、动态、原位’的描述,是非常值得期待的。”

1202.jpg

相关研究在《科学》发表        受访者供图

3年“补稿”交出完美答卷

但这样一项令人惊喜的工作,投稿过程却并不顺利。

2020年,团队第一次将论文投到《科学》。几个月后,稿件被退回,其中一位审稿人提出了“尖锐意见”,直言“并不看好这一‘工具’,因为应用范围太窄,只是针对心血管进行的实验,真正能使用该技术的人很少”。

对这样的反馈,大家却并不意外。他们也希望自己开发的系统能应用在更多的器官和组织中,发挥更强大的作用。

“一开始我们觉得补充实验和改造系统难度不会太大。”赵欢说,“但事实和我们想象得并不一样。”

在不同的生物组织中,不同的基因表达水平不同,其配体、受体的强弱也不相同,这意味着系统的升级绝不是简单的“打补丁”、改条件,很多时候甚至需要放弃一些以前建立的系统,从头再来。

为此,他们进一步扩大了团队合作的范围,与美国加州大学旧金山分校Rong A. Wang教授、西湖大学研究员何灵娟等人合作,经过3年打磨,终于构建出一套具有广泛适用性的系统。

这个系统在小鼠身上,可以实现标记任意类型细胞,并利用该细胞,让周围所有类型的细胞产生响应。

“这篇文章的工作量让人赞叹。我很满意作者的修改数据。”功夫不负有心人,3年的补稿工作得到论文评审人的高度认同。审稿人认为,作者完成了大量的实验工作,展示了该技术的可靠性,适用于众多生物学领域。

未参与这项研究的国家蛋白质科学中心研究员杨晓也对这项成果的广泛适用性很感兴趣:“它为深入探求体内细胞命运可塑性提供了重要的技术手段,有望应用于研究微环境细胞对干细胞的影响、免疫细胞的相互作用、神经元接触、癌细胞之间及其与邻近免疫细胞之间的影响,也能为疾病治疗提供全新策略。”

相关论文信息:https://doi.org/10.1126/science.abo5503

 
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
应激颗粒异常是导致周围神经病的重要机制 “中山大学极地”号顺利完成渤海冰区试航
AI技术从零开始生成原始蛋白质 科学家模拟出末态粒子关联的三维结构
>>更多
 
一周新闻排行
 
编辑部推荐博文