来源:中国科学院宁波材料技术与工程研究所 发布时间:2022/12/2 15:52:35
选择字号:
中科院宁波材料所在无色透明聚酰亚胺领域取得系列进展

 

无色透明聚酰亚胺(CPI)广泛用作柔性显示器件的盖板、基板以及触控层面板,这些领域要求CPI具有高玻璃化转变温度(Tg)、低热膨胀系数(CTE)、出色的光学透明度和良好的力学性能。传统聚酰亚胺由于其共轭的芳香骨架和电荷转移络合物的形成,颜色多为黄色甚至棕黑色。通过合理的结构改性可以获得CPI,常用的方法包括引入含氟基团、脂环单元、大体积取代基、刚性非共面结构等。但是,这些方法通常会造成CPI热性能和机械性能的下降,如何获得兼具高玻璃化温度、高光学透明性和良好力学性能的CPI仍是尚待解决的难题。

中国科学院宁波材料技术与工程研究所高性能高分子材料团队王震研究员、阎敬灵研究员自2006年报道以肼为二胺的全五元环CPI的合成以来(Macromolecules, 2006, 39, 7555-7560),一直致力于新型CPI的合成及薄膜结构与性能关系的研究。团队从分子设计角度出发,先后设计并合成了多种新型的脂环族二酐单体(十氢萘四甲酸二酐、异构二环己基四甲酸二酐)和半脂环族二胺单体(含金刚烷的二胺),利用脂环族PI链结构有效减弱了分子链间和分子链内的共轭作用,制备的CPI薄膜具有优异的光学性能(T400nm>78%)(Polym. Chem., 2017, 8, 6165-6172; Polymer, 2018, 134, 8-19; Polym. Chem., 2020, 11, 6009-6016;中国发明专利:CN111690135B)。除了脂环族单体之外,研究团队还发现刚性扭曲的3,3-联苯二酐可以阻碍电荷转移配合物的形成,与含氟二胺聚合可以得到具有优良的光学透明度、优异的热稳定性、高Tg和良好的溶解度的CPIs薄膜(European Polymer Journal, 2022, 179, 111528);发现通过调节含氟单体、脂环单体和含酰胺单体的共聚比例,可以优化CPI共聚物的热、力和光学性能(J. Appl. Polym. Sci., 2022, 139, e53082)。

近日,团队采用钯催化的溴代苯胺与降冰片二烯环化反应,合成了含降冰片基-苯并环丁烷结构的(N2BC)二胺(CANAL-2和CANAL-4),并成功分离了CANAL-4的立体异构体;利用上述二胺和商品化二酐合成了一系列CPIs,刚性扭曲N2BC部分赋予CPIs极高的Tg(418-480℃)、较低的线膨胀系数(23.9-66.2ppm K-1)以及良好的光学性能(T400nm为61%-84%),相关成果发表在Polymer Chemistry(DOI: 10.1039/D2PY00833E)上,申请中国发明专利1件(202110619524.9)。

为进一步改善CPI的光学性能,团队首次在N2BC骨架上引入含氟基团,通过钯催化的降冰片二烯和含氟溴代苯胺环化反应制备了三种含氟的梯形二胺单体(CANAL-CF3、CANAL-F/CF3和CANAL-2F),与商品化二酐高温缩聚反应制备了一系列CPIs。含氟取代基、脂环结构和刚性扭曲结构的引入阻碍了分子内和分子间电荷转移配合物的形成,因此这些CPIs具有优异的光学性能(其b*<2.2、YI<3.4、Haze<0.5%、T400nm>78%)。此外,由于刚性扭曲的N2BC结构的引入提高了分子链的刚性,CPIs具有极高的Tg(390-479℃)和较好的尺寸稳定性(CTE为36-61 ppm K-1);这些CPIs还具有较好的力学性能,其拉伸强度为71-113MPa,模量为1.5-2.0GPa,断裂伸长率为8.2%-107%。此外,极化率较低的含氟取代基和脂环单元的引入也提高了聚酰亚胺的介电性能,这些CPIs在10GHz频率下的介电常数为2.59-3.01,介电损耗因子为0.004-0.025。

该工作是首次制备含氟化刚性扭曲N2BC链段的具有高热稳定性、良好机械性能和优异光学性能的CPIs,以题为“Colorless Polyimides from Fluorinated Ladder Diamines Containing Norbornyl Benzocyclobutene Segments”发表在Macromolecules上(2022, 55, 7992-8001)上,并被选为封二文章,申请中国发明专利1件(202110835628.3)。

本研究得到宁波市“3315计划”创新团队、宁波市重点技术发展计划、浙江省“高层次人才特殊支持计划”科技创新领军人才、浙江省重点研发计划、院重点部署项目等的支持。

图1 CPI的合成路线(左)和薄膜照片(右)

图2 CPI的DMA(左)和TMA图(右)

图3 CPI的光学性能(左)和Macromolecules封面图(右)

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
应激颗粒异常是导致周围神经病的重要机制 “中山大学极地”号顺利完成渤海冰区试航
AI技术从零开始生成原始蛋白质 科学家模拟出末态粒子关联的三维结构
>>更多
 
一周新闻排行
 
编辑部推荐博文