作者:刘航 来源:澎湃新闻 发布时间:2021/8/12 19:42:54
选择字号:
专访|量子计算“新势力”?磁斯格明子可作为一种量子比特

 

近日,加州理工学院研究员 Christina Psaroudaki和南洋理工大学教授Christos Panagopoulos提出了使用斯格明子作为量子比特的想法,并表示其在实用性和可扩展性方面具有优势。

研究论文于当地时间8月4日发表在《物理评论快报》上,标题为《Skyrmion Qubits: A New Class of Quantum Logic Elements Based on Nanoscale Magnetization》(磁斯格明子量子比特:一类基于纳米级磁化的新型量子逻辑元件)。

“量子计算有望通过量子力学的内在特性来显著提升计算能力,超越当今的超级计算机。” Psaroudaki在接受澎湃新闻(www.thepaper.cn)记者专访时表示,“量子计算机以量子比特为基础,量子比特由一个物理系统的特殊量子状态表示。与经典比特的0或1不同,量子比特也可以处于所谓叠加态——即同时为0和1。为了实现量子计算机,目前正寻找许多不同的候选者。”

论文表示,量子计算的核心是由原子、离子或电子等非常小的粒子制成的量子比特(qubit)。目前,超导电路是嘈杂的中等规模量子计算方案的领先者之一,其尺寸是宏观的,但具有完善的量子特性。尽管超导量子取得了巨大进步,但仍然存在重大挑战,特别在控制和可扩展方面。

在磁性材料中,当局域原子自旋取向发生偏离时,会产生一种具有涡旋结构的准粒子,称为磁性斯格明子。这种准粒子的性质一般可以用拓扑电荷或者螺旋度来进行刻画。

“斯格明子具有1/2自旋,因此可以用作量子比特。由于其具有较好的稳定性、可操控性和可测量性,可以用作量子计算的逻辑量子比特。所谓逻辑量子比特,是指能够逻辑上一致地实现量子比特功能的单元,物理上的偏差、失败概率等影响较小。”国盾量子的行业专家赵于康向澎湃新闻(www.thepaper.cn)记者介绍道。

“磁性斯格明子可以非常小,达到纳米级,它是下一代信息存储和逻辑技术的候选者。磁性斯格明子学是处理经典斯格明子自旋电子学发展的领域,它已发展成一个巨大而活跃的研究领域。”Psaroudaki表示,“我们的提议的一个重要特点是,通过利用斯格明子学领域的知识和最先进技术来加速斯格明子量子比特的发展。斯格明子学的知识和技术可直接利用并转移到我们所提议的平台中,并在实用性和可扩展性方面提供优势。”斯格明子量子比特

Psaroudaki 和 Panagopoulos 提出的这种方案,是利用束缚在磁性纳米盘之中稳定的磁斯格明子来实现量子比特,并利用电场连接不同的磁性纳米盘。

通过施加电磁场,可以调控磁斯格明子量子化能谱中分立的能级,从而改变不同能级之间螺旋度,并将这两个能级编码为量子比特的|0>和|1>两种量子态。此外,还可以对电磁场进行调谐来控制量子比特的相干时间。在这种设计方案中,相邻磁纳米盘的量子比特之间还可以相互耦合,从而实现两比特的量子门操作。最后,量子信息的读出操作可以利用高灵敏度的磁力计来完成。

一位国内量子团队的成员向澎湃新闻(www.thepaper.cn)记者具体介绍了该研究中的磁斯格明子如何用于量子计算,他表示,“这篇文章利用磁斯格明子这种准粒子中,自旋在XY平面内的旋转角度Φ,这一自由度的量子化来进行量子计算。根据参数的不同,分为了两种比特理论设计。”

“第一种是利用自旋在Z方向上的分量相对于平衡态的偏离来编码量子比特状态,偏离为0或者1分别代表量子比特的0态或者1态。这种设计类似于超导比特中的电荷量子比特,用岛上的电荷数来编码比特状态。第二种是利用自旋在XY平面内的旋转角度来编码量子比特状态。方向相反的两个角度分别代表量子比特的0态或者1态。这种设计类似与超导比特中的磁通比特,用电流的顺时针流动和逆时针流动来编码量子比特。”该成员表示。

Psaroudaki介绍称,由于斯格明子可以通过电场和磁场来操纵,因此多个斯格明子量子比特属性是可配置的且可以优化的。这包括逻辑量子比特状态和量子比特寿命,这两者对于实现稳定可靠的量子比特非常重要,能够执行各种逻辑操作。“我们的工作表明,斯格明子量子比特作为量子处理器的逻辑元素非常有吸引力,它正在应对量子比特技术的关键挑战——控制和可扩展性。”

论文表示,可扩展性、微波场的可控性、操作时间尺度和非易失性读出技术聚在一起,使斯格明子量子比特作为量子处理器的逻辑元件极具吸引力。

目前,Psaroudaki和Panagopoulos已经找到了几种候选材料,可供设计人工可调控的磁性斯格明子量子比特。他们预计,随着研究的进行,未来将涌现更多种材料用来实现这种磁斯格明子量子比特。

谈及斯格明子在量子计算领域的前景和挑战时,Psaroudaki表示,“我们的工作处于两个不相关的研究方向——量子比特领域和斯格明子学领域的交叉点,前者旨在开发量子计算机,后者旨在设计基于磁性斯格明子的未来自旋电子器件。我们的想法在斯格电子学和纳米磁性领域引入了一个全新方向,并为量子计算开辟了一条未开发的途径。目前的挑战是实用性,即为特定功能设计架构。”

“这篇文章在二维磁性材料上构建量子比特,这在物理上确实很有意义,开创了一种量子计算的新的实现方法。但由于这是一篇比较理论的文章,单比特自身状态,单比特操纵,比特间耦合,比特状态读取的讨论还停留在物理层面上,没有到实际设计层面上。”前述国内量子计算团队成员表示。

赵于康表示,“该论文的工作是实验了单个斯格明子的逻辑门操控能力,是一条新的量子计算可能路线,但距离实现还有差距,比如尚未实现扩展到多个斯格明子的耦合,逻辑量子比特所需的确定性操控和长时间保持能力验证还不充分。”

 
特别声明:本文转载仅仅是出于传播信息的需要,并不意味着代表本网站观点或证实其内容的真实性;如其他媒体、网站或个人从本网站转载使用,须保留本网站注明的“来源”,并自负版权等法律责任;作者如果不希望被转载或者联系转载稿费等事宜,请与我们接洽。
 
 打印  发E-mail给: 
    
 
相关新闻 相关论文

图片新闻
热带森林“赢家”更小更快 《自然》2024年十大人物公布
AI科学家主导虚拟实验室加速医学研究 蒲瓜基因组组装研究获进展
>>更多
 
一周新闻排行
 
编辑部推荐博文