当前位置:科学网首页 > 小柯机器人 >详情
100平米规模的太阳能光催化水制氢
作者:小柯机器人 发布时间:2021/8/27 15:39:18

日本东京大学Domen, Kazunari团队报道了100m2规模的太阳能光催化水制氢。相关研究成果于2021年8月25日发表于国际一流学术期刊《自然》。

人类活动对地球气候的空前影响和全球能源需求的持续增长,使得碳中和的能源开发变得更加重要。氢是一种极具吸引力且用途广泛的能量载体(以及重要且广泛使用的化学物质),可通过利用太阳光的光催化以及太阳能或风能驱动的电解从水中获得。最高效的太阳能制氢方案将太阳能电池与电解系统耦合,实验室规模的太阳能到氢气(STH)的能量转换效率可以达到30%。光催化分解水的转化效率显著较低,仅为1%左右,但系统设计更简单、更便宜,更易于放大,前提是潮湿、化学计量的氢和氧产品混合物可在现场环境中安全处理,且氢可回收。

根据研究人员先前对基于改进的掺铝钛酸锶颗粒光催化剂的1m2平板反应器系统的演示,研究人员在此报告了100m2平板反应器阵列在几个月内的安全运行,并使用商用聚酰亚胺膜从湿气体产品混合物中自动回收氢气。该系统在安全性和耐久性方面进行了优化,并在故意点燃回收氢气时保持完好无损,最大STH为0.76%。虽然制氢效率低且总体上能量为负,但研究结果表明,安全、大规模的光催化水分解和气体收集与分离是可能的。为了使该技术在经济上可行且实用,接下来的关键步骤是反应器和工艺优化,以大幅降低成本并提高STH效率、光催化剂稳定性和气体分离效率。

附:英文原文

Title: Photocatalytic solar hydrogen production from water on a 100 m2-scale

Author: Nishiyama, Hiroshi, Yamada, Taro, Nakabayashi, Mamiko, Maehara, Yoshiki, Yamaguchi, Masaharu, Kuromiya, Yasuko, Tokudome, Hiromasa, Akiyama, Seiji, Watanabe, Tomoaki, Narushima, Ryoichi, Okunaka, Sayuri, Shibata, Naoya, Takata, Tsuyoshi, Hisatomi, Takashi, Domen, Kazunari

Issue&Volume: 2021-08-25

Abstract: The unprecedented impact of human activity on Earth’s climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy1,2. The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale3. Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up1,2—provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1 m2 panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst4, we here report safe operation of a 100 m2 array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane5. The system, optimized for safety and durability and remaining undamaged upon intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency.

DOI: 10.1038/s41586-021-03907-3

Source: https://www.nature.com/articles/s41586-021-03907-3

期刊信息

Nature:《自然》,创刊于1869年。隶属于施普林格·自然出版集团,最新IF:42.778
官方网址:http://www.nature.com/