当前位置:科学网首页 > 小柯机器人 >详情
膜张力可调控多能干细胞命运
作者:小柯机器人 发布时间:2020/11/20 15:03:31

英国剑桥大学Kevin J. Chalut、伦敦大学学院Ewa K. Paluch等研究人员合作发现,膜张力参与ERK介导的多能细胞命运调节。相关论文于2020年11月20日在线发表在《细胞—干细胞》杂志上。

为了探究形状、力学和细胞命运之间的相互作用,研究人员使用了小鼠胚胎干细胞(ESC),它们在进行早期分化时会改变形状。研究人员发现形状的变化是由β-连环蛋白介导的RhoA活性下降以及随后质膜张力下降调节的。
 
值得注意的是,防止膜张力的降低会导致ESC和类胚体的早期分化缺陷。膜张力的降低促进了FGF信号成分的内吞作用,从而激活ERK信号并指导从ESC状态退出。增加Rab5a促进的内吞作用可挽救有缺陷的早期分化。
 
因此,研究人员表明内吞作用的机械触发增加调节早期分化。这些发现对于理解细胞力学如何调控生化信号以及调控细胞命运至关重要。
 
研究人员介绍,细胞命运的转变通常伴随着细胞形状和力学的变化。然而,人们对细胞力学如何影响控制细胞命运的指导性信号的了解却很少。
 
附:英文原文

Title: Membrane Tension Gates ERK-Mediated Regulation of Pluripotent Cell Fate

Author: Henry De Belly, Aki Stubb, Ayaka Yanagida, Céline Labouesse, Philip H. Jones, Ewa K. Paluch, Kevin J. Chalut

Issue&Volume: 2020-11-19

Abstract: Cell fate transitions are frequently accompanied by changes in cell shape and mechanics. However, how cellular mechanics affects the instructive signaling pathways controlling cell fate is poorly understood. To probe the interplay between shape, mechanics, and fate, we use mouse embryonic stem cells (ESCs), which change shape as they undergo early differentiation. We find that shape change is regulated by a β-catenin-mediated decrease in RhoA activity and subsequent decrease in the plasma membrane tension. Strikingly, preventing a decrease in membrane tension results in early differentiation defects in ESCs and gastruloids. Decreased membrane tension facilitates the endocytosis of FGF signaling components, which activate ERK signaling and direct the exit from the ESC state. Increasing Rab5a-facilitated endocytosis rescues defective early differentiation. Thus, we show that a mechanically triggered increase in endocytosis regulates early differentiation. Our findings are of fundamental importance for understanding how cell mechanics regulates biochemical signaling and therefore cell fate.

DOI: 10.1016/j.stem.2020.10.018

Source: https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(20)30534-8

期刊信息

Cell Stem Cell:《细胞—干细胞》,创刊于2007年。隶属于细胞出版社,最新IF:21.464
官方网址:https://www.cell.com/cell-stem-cell/home
投稿链接:https://www.editorialmanager.com/cell-stem-cell/default.aspx