近日,西安交通大学微电子学院王红义教授团队及其合作者在人工智能设计陀螺领域取得进展,采用了人工智能策略探索高性能新颖结构拓扑,实现了数量级提升。相关研究成果发表在《微系统与纳米工程》上。
采用微机电系统(MEMS)技术设计的MEMS陀螺具有体积小、功耗低、成本低、易于与集成电路集成等优点,对微纳卫星、无人机群等先进装备的大批量部署具有重要意义。MEMS陀螺仪正在取代造价昂贵的传统陀螺仪,目前,中低性能的陀螺仪已几乎完全被MEMS陀螺仪取代,正在向高性能领域发展。MEMS碟形谐振陀螺(DRG)凭借其抗震性、低温漂、高灵敏度等显著优势,是高性能谐振式微机械陀螺的重要类型。但传统设计方法存在拓扑与性能关系预测困难、仿真评估速度缓慢、优化严重依赖专家经验、迭代次数多等问题,使得MEMS DRG的发展缓慢。
团队首先在充分考虑工艺约束的前提下,提出了一种新的陀螺仪非参数表征方法,将陀螺的拓扑设计任务转化为路径规划问题。然后,基于卷积神经网络构建代理模型,利用传统有限元分析得到的样本进行训练,实现拓扑性能的快速评估。最后,采用深度强化学习算法在整个设计空间内进行探索,输出性能优异的结构拓扑。经过8000次探索后,得到了7120种新颖的达到导航级精度的结构拓扑,其中有93.7%拓扑的性能优于传统多环拓扑,部分拓扑性能相较传统拓扑甚至实现了数量级提升。借助于高效的代理模型,相较于昂贵的有限元仿真,其加速比达到了约40万倍,将数月的设计周期缩短到了7分钟左右。
团队提出了一种新的陀螺仪非参数表征方法,将陀螺的拓扑设计任务转化为路径规划问题。(课题组供图)
?
相关论文信息:https://doi.org/10.1038/s41378-024-00792-4
版权声明:凡本网注明“来源:中国科学报、科学网、科学新闻杂志”的所有作品,网站转载,请在正文上方注明来源和作者,且不得对内容作实质性改动;微信公众号、头条号等新媒体平台,转载请联系授权。邮箱:shouquan@stimes.cn。