在假设检验理论中,概言之,我们是针对某个假设而制定检测实验的,如果这个实验结果支持假设,我们就说这个这个实验结果是阳性的;不支持,就说检测结果是阴性的。我们用一种仪器去检测某人是否有某种病,那么我们用的假设就是“某人有某种病”,如果仪器检出来的各项指标综合起来支持某人患有某种病的假设,我们就说检测结果呈阳性,否则就说检测结果呈阴性。
因此上面题目首先就把“阳性”和“阴性”的概念搞错了。对于有病的人,如果检测结果呈阳性,那么这个检测结果就是真阳性;如果检测结果呈阴性,那么这个检测结果就是假阴性。对于没病的人,如果检测结果呈阳性,那么这个结果就是假阳性;如果检测结果呈阴性,那么这个结果就是真阴性。
为了使这些概念清楚,我用一个表来展示(即高山说的“模糊矩阵”(confusion matrix),实际上应该翻译为混淆矩阵。模糊矩阵(fuzzy matrix)是模糊数学用的,不是这个矩阵):
|
人有病 |
人无病 |
检测结果呈阳性 |
真阳性 |
假阳性 |
检测结果呈阴性 |
假阴性
|
真阴性 |
所以对于有病的人,我们谈的是真阳性和假阴性,而不是真阳性和假阳性;对于无病的人,我们谈的是假阳性和真阴性,而不是假阴性和真阴性。所以,这一点,题目完全说错了。
而综合这个题目的上下文,其正确的对应数据如下表:
|
人有病 |
人无病 |
检测结果呈阳性 |
真阳性99%
|
假阳性1%
|
检测结果呈阴性
|
假阴性1%
|
真阴性99%
|