原文中的问题是,如果X=B=99,王宏检验结果是阳性,问王宏是真正有病(金标准病人)的概率是多少?
我们知道X,B,是对正问题有了确定的答案,我们对测试方法的性能有完全的了解。现在要解决的是逆问题,如果我们知道结果,我们能知道输入参数(有病,无病)的概率分布吗?
“常识”告诉王宏,他真正有病的概率就是X%(=99%)。
可是张天蓉介绍的概率论告诉我们,在这里“常识”不成立。要知道王宏真正有病的概率,我们还需要一个不可缺少的参数:人群中真正的病人的比率C。原文中假定C=0.1% 。
按照所给的参数,对100000个人进行筛查。其中有100个真正的病人,会报告99例阳性。其余的99900非病人,由于1%的误报率,会报告999例阳性。最终结果是,在99+999例阳性报告中,只有99个真正的病人。
王宏真正有病的概率,确实就是9% 。【全文阅读】