### ■"小柯"秀

一个会写科学新闻的机器人

《自然 - 化学》

### 科学家实现 卤素取代硅正离子的分离

德国柏林工业大学的 Martin Oestreich 团队 实现了卤素取代硅正离子的分离。相关成果近日 发表于《自然 - 化学》。

2中國科學報

数十年来, 卤素取代硅正离子是否存在及是 否为反应中间体一直受到人们关注。这类物质因 计算预测的超强路易斯酸度,在穆勒-罗乔工艺 废物回收、全氟烷基和多氟烷基物质的加氢脱氟等 合成转化中的相关性具有重要价值。

研究报道了通式为 [Alk<sub>2</sub>XSi(HCB<sub>11</sub>H<sub>5</sub>Br<sub>6</sub>)] (X=F、Cl、Br 或 I; Alk=Me、Et、iPr 或 tBu) 的卤素 取代硅正离子的生成和表征。尽管传统的 Corey 氢化物转移反应不能在凝聚相中制备这些离子,但 使用 Reed 的超强酸性苯鎓离子 [H(C<sub>6</sub>H<sub>6</sub>)] [HCB11H5Br6] 为卤代硅烷 Alk2XSi-LG(LG=H 或 Ph)进行质子解离反应,提供了可行方式。

研究人员分离并通过晶体结构表征了一整套 由阴离子稳定的 iPr<sub>2</sub>XSi+阳离子。对氟离子亲和度 的定量评估表明,这些卤素取代硅正离子比已知的 三烷基和氢取代同系物的路易斯酸性更强。

相关论文信息:

https://doi.org/10.1038/s41557-025-01880-2

#### 《自然 - 地球科学》

#### 格陵兰冰盖冰下湖的洪水暴发

英国兰卡斯特大学的 Malcolm McMillan 团 队研究了格陵兰冰盖冰下湖的洪水暴发。相关成 果近日发表于《自然 - 地球科学》。

观测和理论表明,冰盖表面产生的融水可以 排到冰盖床上,在那里相对畅通地流入海洋。这 种对冰盖内部和冰盖下水运动的理解,为预测冰 盖变化的理论模型奠定了基础。

研究团队提供了格陵兰岛融水排放的一种 破坏性模式的证据。他们通过多个卫星图像发 现,一股9000万立方米的冰下洪水从河床向上 冲破了冰盖,在冰面上暴发。这一现象是由冰下 湖泊的快速排水引发的,并发生在一个预计冰床 会冰冻的地区。由此产生的洪水引发了下游海洋 冰川的急剧变化。

该观测揭示了冰盖和基础水文系统之间的 复杂双向耦合,并表明极端水文事件可能发生在 冰床预测为冰冻的区域。这些过程可以影响冰盖 的动力学和结构完整性,但在目前的冰盖模型中 没有被考虑进去。

https://doi.org/10.1038/s41467-025-61693-2

#### 《免疫学》 基因治疗后

人体内出现先天样记忆 T 细胞

美国圣犹达儿童研究医院的 Ben Youngblood 团队报道,在X连锁重症联合免疫缺陷 (SCID-X1)基因治疗后,人体内迅速出现先天 样记忆 T 细胞。相关论文近日发表于《免疫学》。

虚拟记忆T细胞具有先天免疫细胞的特 征,代表了先天免疫和适应性免疫之间的发育连 续体。研究人员描述了虚拟记忆 T 细胞在早期 人类生活中的起源。 一项对婴儿 SCID-X1 基因 治疗后外周 T 细胞的纵向分析显示, 先天样记 忆 CD8+T 细胞早期富集,表达 NKG2A、先天相 关转录谱和独特的 T 细胞受体(TCR)库。新生 的先天样记忆 NKG2A+T 细胞亚群的全基因组 DNA 甲基化分析,证实了一个亚群特异性的表 观遗传特征,包括一种平衡的效应反应。

此外, 在体外用 IL-12 和 IL-18 刺激 NKG2A<sup>+</sup>T 细胞,可引发抗原非依赖性干扰素 γ (IFNy)的表达。这些表观遗传特性表明, NKG2A+先天样记忆 T 细胞在人类生命早期发 育,并能以抗原非依赖性应答的方式快速诱发效 应细胞因子。

相关论文信息:

https://doi.org/10.1016/j.immuni.2025.07.002

### 对不同种族和暴露情况的 肺腺癌综合分析

美国麻省理工学院和哈佛大学布罗德研究 所的 Gilbert S. Omenn 团队开展了不同种族和 暴露情况的肺腺癌综合分析。相关成果近日发表 于《癌细胞》。

肺腺癌是一个全球健康问题。结合蛋白质组 学及翻译后修饰与基因组学的蛋白质基因组学 研究,可以确定其临床层次和致癌机制,但在检 测种族、吸烟、环境暴露及性别等因素对这种异 质性疾病的影响方面能力不足。

该研究对 406 例不同地理和人口背景的肺 腺癌肿瘤与匹配的正常邻近组织进行了全面的 蛋白质基因组学分析,探讨了未被研究的驱动 突变的影响、染色体不稳定性的预后作用、免疫 信号传导模式、内源性诱变剂和环境致癌物的 差异与性别特异性效应,以及具有"晚期样"特 征的早期肿瘤的病理生物学。候选蛋白质生物 标志物能够以高度碎片化的基因组展现不稳定 肿瘤和致癌物暴露,并显示肺腺癌亚型特异性 的治疗缺陷。

这些观察结果和相关数据能够推动对这一 致命疾病的精确管理。

相关论文信息:

https://doi.org/10.1016/j.ccell.2025.07.011

更多内容详见科学网小柯机器人频道: http://paper.sciencenet.cn/Alnews/

# 补充锂元素可能逆转阿尔茨海默病

本报讯 19世纪,锂曾被认为是一种能调节 情绪的健康补品。到20世纪70年代,它成为治 疗双相情感障碍的金标准疗法。同时,有流行病 学研究表明,在饮用水含有微量锂的地区,痴呆 症发病率相对较低。然而,关于锂元素对认知衰 退影响的临床试验,结果却喜忧参半。

在8月6日发表于《自然》的一项最新研究 中,研究人员首次证明了这种金属元素天然存在 于大脑中,并发挥着重要的生理作用。他们提出, 补充锂元素可以预防甚至逆转阿尔茨海默病。

该研究通过对人类脑组织的分析和一系列 小鼠实验,揭示了一个共性模式:大脑中的锂浓 度下降往往伴随着记忆的丧失, 而阿尔茨海默 病的神经病学标志物,即淀粉样斑块和 tau 蛋白 缠结,也会同步出现。研究人员同时在小鼠中发 现,有证据表明一种特定类型的锂补充剂可以 逆转这些神经学变化,恢复丧失的记忆,使大脑 重回更年轻、更健康的状态。

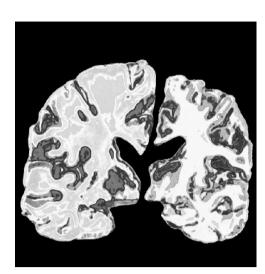
全球有超过5500万人受痴呆症影响,其中

大多数都患有阿尔茨海默病。市面上的抗淀粉 样蛋白疗法虽能缓解认知能力下降,但"无法阻 止它"。论文通讯作者、美国哈佛医学院的 Bruce Yankner 说:"我们还没有针对阿尔茨海 默病的'青霉素'。

研究人员发现,在人类大脑中,受阿尔茨海 默病影响区域的锂元素水平低于未受影响的区 域。而在患有轻度认知障碍的人群中,大脑中的 锂被"困"在淀粉样斑块里,导致可用于基本大 脑功能的锂减少。Yankner表示,这种锂的缺失 "随着病情进展而越发严重"

在阿尔茨海默病小鼠模型的大脑中也有类 似的情况。大脑中的锂越少,淀粉样蛋白越多; 而淀粉样蛋白的增多又导致锂的进一步减少。 这一恶性循环可能表征了阿尔茨海默病的毁灭 性进程。对此,Yankner团队找到了一种可能打

大多数对锂的临床试验都使用碳酸锂进行 测试。而该团队证明,这种形式的锂很容易被淀 粉样斑块困住,但乳清酸锂等形式则不会。当给 小鼠服用低剂量的乳清酸锂时,后者逆转了与 疾病相关的脑损伤,并恢复了小鼠的记忆。


研究人员表示,该研究没有发现与锂相关的 毒性,这可能有助于简化临床试验,并在未来几年 内确定锂治疗方案是否适用于阿尔茨海默病患 者。不过这需要有足够的政府或商业资金支持。

此外,锂是一种元素,因此无法申请专利。 "没有哪家制药公司能够从中获利。"加拿大达 尔豪斯大学的 Tomas Hajek 表示。

这种疗法可能不只对痴呆症有潜在益处。 澳大利亚墨尔本大学的 Ashley Bush 提出,双相 情感障碍患者,尤其是老年患者,使用乳清酸锂 的效果可能比标准碳酸锂疗法更好。

"恐怕没有多少在研药物能同时具备如此 充分的证据和良好的安全性。"Hajek 表示,"锂 便宜得很,还可能对人们有益处。 相关论文信息:

https://doi.org/10.1038/s41586-025-09335-x



正常人大脑切片(左)与阿尔茨海默病患者 图片来源:Jessica Wilson 大脑切片的对比。

### ■ 科学此刻 ■

### 沉浸式 VR 有效止痛

慢性疼痛常持续超过3个月,且治疗困难。 一项近日发表于《疼痛》的研究表明,沉浸式虚 拟现实(VR)自然体验可有效缓解慢性疼痛患 者的典型症状,且越身临其境受益越明显。

研究人员在健康参与者中模拟了慢性疼痛 状态,发现 VR 自然体验能产生与止痛药相似 的效果,且镇痛效果在 VR 体验结束后最少可 持续5分钟。研究还指出, 沉浸式360度 VR 自 然场景在缓解慢性疼痛方面的效果几乎是 2D 视频图像的两倍。

论文通讯作者、英国埃克塞特大学的 Sam Hughes 表示:"越来越多的证据表明,接触自然 可缓解短期疼痛, 但自然环境对慢性疼痛的作 用研究较少。此外,不是所有人都能外出到自然 中散步,特别是那些有慢性疼痛等长期健康问 题的人。我们首次探讨长期接触 VR 自然场景 对慢性疼痛敏感性症状的影响。研究表明,沉浸 式自然体验可通过增强身临其境的感觉并利用 大脑内部的疼痛抑制系统, 减少这种疼痛敏感 性的扩散。

该研究共招募了29名健康参与者。首次



VR 自然体验可激活大脑的天然镇痛机制,从而缓解慢性疼痛。

实验时, 研究人员在参与者前臂施加电击诱

发疼痛,测量电击后50分钟内的疼痛变化,

并展示了健康参与者在缺乏自然场景刺激下

如何对刺痛产生敏感性。结果显示,参与者产

生了一种与神经痛患者相似的敏感性。在第

二次实验中, 研究人员让同一组参与者分别

体验了美国俄勒冈州瀑布的 45 分钟 360 度

VR 场景及其 2D 屏幕版本,以观察这如何改

共振成像扫描。研究人员通过涂抹冷凝胶诱发

持续性疼痛,并查看扫描数据以研究参与者的

反应机制。结果发现,沉浸式 VR 自然体验显著

抑制了刺痛带来的疼痛敏感性扩散, 且这种镇

在另一次独立实验中,参与者接受了脑磁

变疼痛敏感性的发展。

痛效果在 45 分钟的体验结束后仍存在。

图片来源:Shutterstock

参与者在 VR 中越感觉身临其境, 镇痛效 果越明显。脑磁共振功能成像扫描显示,大脑疼 痛调节区域连接性越强,疼痛感越轻。研究表 明,VR 自然体验可改变慢性疼痛条件下大脑 和脊髓中疼痛信号的传递方式。

论文共同作者、埃克塞特大学的 Sonia Medina 表示, VR 能有效缓解疼痛, 可能因其强 烈的沉浸感让人仿佛置身自然, 并且这种感受 越真实,镇痛效果越显著。她希望这一发现能推 动更多研究, 并在医疗与养老等场景中应用以

相关论文信息:

https://doi.org/10.1097/j.pain.0000000000003701

### 让海星消融的"凶手"找到了

本报讯 让海星消融的"凶手"——一种细 菌被找到了。科学家发现,这种导致海星消融病 的细菌造成了 2013 年以来数十亿海星的死亡 和海藻生境的大规模消失。相关研究8月4日 发表于《自然-生态与演化》,有望帮助人们为 受该疾病影响的近海生态系统制定修复策略。

海星消融病会使海星解体,并影响20多个 物种。自 2013 年出现以来,海星消融病已成为 非商业物种中记录的最大规模的海洋流行病, 破坏着从墨西哥到阿拉斯加的北美洲太平洋沿 岸的海星种群,包括向日葵海星。

加拿大不列颠哥伦比亚大学的 Melanie Prentice、Alyssa-Lois Gehman 和同事利用野生和 圈养的经检疫的向日葵海星开展了7项对照暴 露实验,结果提示一个活的非病毒病原体参与

团队随后用基因测序分析了来自这些海星 的受感染和健康组织的微生物群,从而鉴定出 病原体 Vibrio pectenicida 是海星消融病的一个 病因。将海星暴露在该细菌纯样品中的实验室 实验证实了这一结果

研究结果有望助力实现海星消融病的跨环 境和物种检测, 还将帮助人们理解该疾病的传 播方式,并实现更好的管理以应对其在野生种 群中的暴发。 (冯维维)

相关论文信息:

https://doi.org/10.1038/s41559-025-02797-2

### 研究发现 全新物态"量子液晶"

据新华社电 由美国罗格斯大学牵头的新 研究发现一种名为"量子液晶"的全新物质状 态,这将有助于设计出可应用在太空等极端环 境中的新一代超高灵敏度量子磁传感器。

固态、液态、气态、等离子态是自然界最基 础且广泛存在的 4 种物态。科学等 温、高压或强磁场等极端条件下,会出现新的物 态。上述新研究突破了人们对四种基础物态的 认知。相关研究成果近期已发表在美国《科学进 展》杂志上。

研究人员在超高磁场环境下,让一种名为 "韦尔半金属"的导电材料和另一种名为"自旋 冰"的绝缘磁性材料相互作用。当两种材料结合 时,会形成一种异质结构,由不同材料的原子层

他们发现,在两种材料的交界面处,"韦尔 半金属"的电子特性会受到"自旋冰"磁性的影 响,引发极为罕见的现象"电子各向异性",即材 料在不同方向上的导电性能不同。在 360 度的 圆周范围内,在6个特定方向上导电性最低。而 当磁场增强时, 电子突然开始沿两个相反方向 流动,打破了传统的对称性流动模式,这表明在 强磁场下出现了新型量子态——"量子液晶"。

研究人员说,这一发现揭示了操控材料特 性的新方法。通过了解电子在这些特殊材料中 的运动方式,科学家有望设计出新一代超高灵 敏度量子磁传感器,这类传感器在太空等极端 环境中能发挥重要作用。

## 为可可"遮阴"能减少碳排放



图片来源:unsplash

本报讯8月6日,一项发表于《自然-可持 续性》的研究表明,在供应全球60%可可的地 区,通过在农场种植更多遮阴树,可减少全球巧 克力行业的碳排放。

澳大利亚昆士兰大学的 Wilma Blaser-Hart、Simon Hart 团队利用卫星图像和机

器学习对西非的农场进行了考察。"可可树本质 上是热带雨林中的下层树种,但在单一栽培种 植系统中,它们被种在了开阔地带。 Blaser-Hart 解释说。

"可可农场中的遮阴树能够在地上和地下 生物量中封存大量碳。"Blaser-Hart 说,"我们的 分析发现, 加纳和科特迪瓦可可种植区的遮阴 树覆盖率相对较低,约为13%,远低于其可达到 的水平。

研究发现,在未来几十年里,将这两个国家 可可农场的遮阴树覆盖率提高到至少30%,每 年可封存高达 1020 万吨二氧化碳当量。二氧化 碳当量是一种标准度量单位,用于根据不同温 室气体的全球变暖潜能值比较其排放量。

Blaser-Hart 称,增加遮阴树将为那些因种 植可可而砍伐森林的地区带来环境和生态系统 效益。"我们计算出的碳封存量约占这两个国家 年度总排放量的9%,约为目前两国与可可相关 排放量的 167%。"

除了能封存碳,在可可农场种植多种树木 还将有助于保护生物多样性、提高土壤肥力、调 节温度,并减轻病虫害压力。

对农场主而言,可可树在30%至50%的遮阴 水平下种植,不会出现显著的产量损失。"因此通 过植树增加碳封存具有巨大的潜力。"Hart 说。

Blaser-Hart 补充说:"农林业能够发挥切实 的气候缓解作用,但不能替代天然森林。保护天 然森林仍是优先事项。

Hart 表示,该团队的方法可应用于南美洲 和东南亚的其他可可产区,还可推广至咖啡等 其他耐阴多年生作物。"对于可可而言,在农场 种植遮阴树是一种双赢局面——通过封存碳, 为巧克力行业带来显著的环境效益,同时不会 造成作物产量损失。

相关论文信息:

https://doi.org/10.1038/s41893-025-01608-7

### 环球科技参考

中国科学院成都文献情报中心

### 研究人员推出细胞语法框架

美国印第安纳大学、约翰斯·霍普金斯大学 及马里兰大学医学院的研究团队提出了一种名 为"细胞行为假设语法"的新框架。该框架利用 自然语言描述细胞行为,从而构建数学模型,极 大推动了虚拟细胞实验室的建立。这一突破为 生物学家尤其是缺乏编程背景的研究人员提供 了新工具, 使他们能够更容易地模拟和预测细 胞在多细胞生态系统中的行为。

该研究的核心在于通过简单的人类自然语 言描述,如"低氧让癌细胞加速移动",将这些描 述转化为基于智能体的模型中的数学方程。研 究团队通过模拟细胞之间的互动, 成功预测了 癌细胞转移、免疫反应等复杂生物过程,展现了 其在癌症研究、神经科学等领域的应用潜力。研 究表明,利用这种细胞语法,科学家能够进行虚 拟"思维实验",从而检验并拓展对多细胞系统

该方法在实际应用中显示出有效性,模拟 了胰腺癌细胞与癌症相关成纤维细胞间的互

动,揭示了后者在癌细胞转移中的双重作用。对 免疫治疗过程的模拟发现,巨噬细胞可能在癌 细胞转移中起"叛变"作用,这有助于后续实验 验证和治疗方案制定。研究还模拟了大脑发育 过程,展示了在神经科学领域的应用前景。

这一成果不仅提供了新研究工具,也为个 性化医疗和虚拟临床试验开辟了新方向。研究 团队强调,细胞语法的开源特性让更多研究人 员能快速测试药物方案,有望缩短抗癌药物研

### 改造生物炼油厂实现交通运输领域脱碳

近日,欧洲投资银行与意大利埃尼集团签 署了一项为期 15 年、金额达 5 亿欧元的融资协 议,旨在将位于意大利托斯卡纳的利沃诺炼油 厂改造成生物炼油厂。该项目将成为埃尼在意 大利的第三家生物精炼厂, 前两家分别位于威 尼斯和杰拉。

这一转型的核心在于利用埃尼的 Ecofining™技术生产氢化植物油(HVO)。这种生物燃 料将从可再生原料中提取,包括废弃食用油和 农业残渣。鉴于全球对氢化生物燃料的需求预 计在 2024 年至 2028 年间增长 65%, 该项目的 实施将有效满足市场需求,并推动意大利向可 持续发展的方向迈进。

此外,该项目未来可能对工厂进行改造,以 便生产可持续航空燃料(SAF),这对于航空业的 脱碳显得尤为关键。这展示了工业创新如何促 进能源转型,加速实现碳中和。

这一项目不仅有助于减少交通运输部门的 排放,还将促进意大利实现生物燃料的生产目 标,满足未来日益增长的市场需求。

### 最新版《英国生物科学展望》发布

日前,英国生物技术与生物科学研究理事 会(BBSRC)发布最新版《英国生物科学展望》, 旨在利用生物科学改善人类、动物和植物健康, 创造可持续农业和食品系统,推动韧性生物经 济发展。该报告强调,通过工程生物学、先进成 像和人工智能等变革性技术的应用,加速生物 科学领域的进步。

《英国生物科学展望》的愿景是利用生物 科学的力量,为英国创造一个健康、可持续和 有韧性的未来。生物科学的发现和创新对英 国引领发展、创造普惠共享的增长与进步机 遇至关重要。生物解决方案日益融入全球供 应链,改变 BBSRC 生产食物、能源、化学品、 药物和材料的方式,为构建更可持续、更具韧 性的经济体系奠定基础。生物工程和生物制 造利用自然过程加速这一转变,推动创新,创 造高附加值就业,并将英国置于全球新兴市 场的前沿。工具、技术和数据应用的进步,连 同新的发现,共同推动生物解决方案的发展, 以应对紧迫的社会问题。

BBSRC 致力于 3 个相辅相成的目标:健 康的人类、动物和植物,可持续农业与食品体 系,以及韧性生物经济。为实现这些目标, BBSRC 将用创新推动实际变革、促进发现和 推广变革性技术。BBSRC 将通过战略计划确 定研究重点,灵活应对挑战,确保英国生物科 学繁荣发展。 (吴晓燕编译)