Ⅱ发现·进展

中国科学技术大学等

肿瘤登记:癌症防治的基石

■本报记者 张思玮

近日,《柳叶刀》发表社论文章指出,当 前全球癌症防治迫切需要相应的数据用于 制订癌症防控计划,与肿瘤登记相关的真实 世界数据至关重要。

然而,目前基于人群的肿瘤登记覆盖的 人口仅占全球人口的21%。数据统计显示,全 球现有约700个高质量肿瘤登记中心,大多 位于高收入国家。美国和北欧部分地区的肿 瘤登记几乎实现了人口全覆盖,而在非洲和 亚洲,肿瘤登记覆盖率仅为2%和13%。

那么,肿瘤登记工作存在哪些问题,有 哪些难点?如何更好地开展肿瘤登记工作, 以制定肿瘤预防控制策略、开展综合防控研 究、评价防控效果呢?

肿瘤登记产生的益处并非立竿见影

国际癌症研究机构预测,到2050年,全 球癌症新发病例将超过3500万,较2022年 增加77%。其中,中低收入国家的癌症负担最 重,预计未来25年内,这些国家的癌症死亡 率几乎要翻一番。

2015年,联合国通过了可持续发展目标 3.4(SDG 3.4),以缓解不断增加的非传染性 疾病负担。该目标要求到 2030 年各国包括 癌症在内的非传染性疾病导致的过早死亡 率减少 1/3。

然而,目前缺少各癌种的过早死亡率

美国耶鲁大学医学院教授 Shilpa S Murthy 等人在研究过程中发现,在世界银行 所有收入水平和世界卫生组织所有区域的 183 个国家中,有 138 个(75%)国家的过早死

本报讯(见习记者蒲雅杰)近日,中国科

学院古脊椎动物与古人类研究所团队研究

了新发现的重庆盐井沟大垭口动物群化石,

并重新讨论了大垭口动物群的物种多样性

和地质年代。相关研究成果在线发表于《第

古老年代数据——距今约 1.01Ma(百万 年),表明大垭口动物群年代处于早更新世

中 - 晚过渡期,为研究中国哺乳动物对早-

中更新世气候转换期(EMPT)的响应提供

现该点哺乳动物共计5目11科18属19

种,其中大熊猫武陵山亚种、云豹、中国貘、

丽牛等物种为盐井沟地区的首次发现。研究

依据大垭口动物群重建了该地区在早更新

7一所一人一事

研究团队获得了盐井沟地区动物群最

在大垭口动物群的化石中,研究团队发

四纪科学评论》。

揭秘百万年前在重庆栖息的"动物居民"

亡率下降,但仅有8个(4%)国家有可能实现 SDG3.4 中所有癌症的综合目标。

社论文章指出,癌症防治存在严重的不 平等现象,如果不采取行动,这种不平等将 进一步加剧。癌症防治是一个全球健康问 题,迫切需要扩大预防和医疗服务的规模。

基于人群的肿瘤登记是衡量一个国家 癌症负担的金标准,能帮助政策制定者确 定优先事项并规划应对新兴趋势。肿瘤登 记所包含的信息有助于将人力和资源规划 到最需要的地方,可以为有针对性预防、筛 查及治疗计划的设计提供信息。肿瘤登记 还在癌症研究中发挥着至关重要的作用, 促进关于诊断、治疗、健康公平和生存率等 相关研究。

例如,美国疾病控制与预防中心(CDC) 计划将临床数据与患者报告结局相结合,以 改善癌症幸存者的照护;《柳叶刀》乳腺癌重 大报告则呼吁,通过登记系统来监测转移性 癌症患者的复发情况。这些改进均有利于促 进更具包容性的防治工作。

不过,该社论文章指出,建立并维持肿 瘤登记绝非易事,肿瘤登记产生的益处并不 是立竿见影的。人力与财力资源短缺、政治 局面不稳定、问责机制不完善,都会阻碍肿 瘤登记的发展。但做好肿瘤登记,并将其转 化为更好的成果,可以挽救更多生命。

据悉,联合国将于今年9月召开第四次 非传染性疾病预防和控制高级别会议,再次 提醒各国关注肿瘤登记工作。

"肿瘤登记的目标不是把癌症患者视作 统计数据,而是为所有人提供更加公平和包 容的癌症服务。"社论文章最后指出。

世中 - 晚过渡期的古生态环境,认为该地区

在早更新世中 - 晚过渡期处于一个多山的

亚热带森林生态系统,以出现乔木、灌木混

地区,EMPT 的气候剧烈波动和生态变化对

处于中 - 低纬度的中国南方大型哺乳动物 的影响被低估。此外,大垭口发现的现代云

豹和虎的化石记录表明,古中华虎向现代虎

的转变可能代表大型猫科动物对 EMPT 初

https://doi.org/10.1016/j.quascirev.2025.

▶重庆大垭口周边在早更新世中 - 晚

研究团队供图

研究认为,相比非洲和欧亚大陆高纬度

合及发育河流为主要特点。

始阶段气候与生态变化的响应。

相关论文信息:

期的生态场景。

人工智能为我国肿瘤登记"添翼"

1959年,我国在河南省林县(现林州市)建 立了第一个农村肿瘤登记点,此后逐步建立了 县、乡、村三级综合防癌网络并持续至今:2022 年我国肿瘤登记已覆盖全国 98.6%的县区,建 成 2806 个肿瘤登记点……我国肿瘤登记工作 已经走过60多年,取得了极大的成绩。

据中国科学院院士、国家癌症中心主任 赫捷介绍,目前,我国基本建成以国家癌症 中心为龙头,以各级医疗卫生机构为主体, 上下联动、防治结合的癌症综合防治网络, 已建立覆盖全国的人群肿瘤登记体系。这为 癌症防控提供了科学依据。

"肿瘤登记工作在不同时期为国家肿瘤 防控提供了科学、翔实的肿瘤负担和流行情 况信息,并为我国制定和实施肿瘤防控策略 提供了客观依据。"中国医学科学院肿瘤医 院肿瘤登记办公室主任魏文强接受《中国科 学报》采访时表示,肿瘤登记是一项基础性 工作,需要长期、连续、动态地坚持。

不过,魏文强表示,我国肿瘤登记工作 还存在不足,主要包括肿瘤登记点分布不均 衡、肿瘤登记数据深度和广度不足、监测数 据时效性有待提高、传统监测手段数据可获

目前,我国肿瘤登记点以肿瘤高发区和 卫生资源较好的地区为主,集中在中东部地 区;西部地区和卫生资源欠缺的地区登记点 较少,监测数据质量及均质化性有待提高。

而以人群为基础的肿瘤登记只能获取 基本的人群恶性肿瘤发病和死亡信息,涵盖 变量较少,普遍缺乏肿瘤详细病理、分期、诊 治和生存转归等临床诊疗的相关信息。"并 且,人群肿瘤登记数据与以医院为基础的临 床诊疗数据分散割裂,难以获得患者从发病 到死亡的全周期、全链条数据。"魏文强说。

此外,肿瘤病例收集及随访实施操作难 度越来越大,特别是在城市地区。主要难点 在于,数据获得成本巨大,登记点变动频繁, 无法形成固定队列; 监测数据可持续性差, 难以掌握动态连续变化趋势。

值得注意的是,随着互联网、云计算等 信息技术与通信技术的迅猛发展,肿瘤登记 工作迎来了发展机遇。

魏文强建议,应依托互联网和人工智 能技术,实现肿瘤登记监测数据的自动抓 取,提高数据的可获得性,大幅降低人力成 本;依托区块链技术,提高登记数据的质量 和可信度;依托大数据深度挖掘和信息化 技术,提高数据连续性、时效性,更好地发 挥登记数据价值,为循证决策支持提供实 时共享和及时服务

同时,他认为要加强与国际癌症研究署 等的交流合作,充分利用我国肿瘤登记的丰 富数据资源,开展创新性、前瞻性国家合作 研究,促进肿瘤登记数据与防控战略、卫生 经济政策等方面的联合研究,为世界恶性肿 瘤防控提供中国经验。

"恶性肿瘤精准监测数据是我国制定 恶性肿瘤防治政策和评价防治工作效果的 基石,整合传统肿瘤登记数据,充分应用大 数据、信息新技术,重构肿瘤登记监测流程 及工作机制是大势所趋。"魏文强表示,随 着信息化进程逐步推进,我国肿瘤登记工 作将迈上新台阶。

新方法有助于 准确预测台风路径

> 本报讯(记者王敏、赵广立)中国科学技术大学、南京信 息工程大学和中国科学院大气物理研究所的研究人员合 作,通过使用全球对流解析模型(全球3公里水平分辨率), 基于新一代国产神威超算"神威·海洋之光"构建了全球对 流解析模式,将2021年台风"烟花"120小时轨迹预报误差 缩小到 100 公里内。近日,研究成果发表于《科学通报》。

全球气候变化背景下,准确预测台风路径对于减轻灾 害风险至关重要。然而,近年来相关技术进步趋于平缓,引 发了关于"台风路径可预测性是否已达到极限"的讨论,该 研究的突破则对这一讨论给出了否定答案。

论文表示,全球对流解析模型成功预测了台风"烟花"的 路径突变及双重登陆位置,表现优于当前的业务预报。

研究团队进一步开发了一种创新的可变网格细化策 略,通过针对影响台风运动的关键天气系统,在计算需求与 精度之间实现了平衡。与全球对流解析模型相比,这种方法 在保持相近精度的同时,计算成本降低了90%以上,并扩展 应用于历史上其他 10 个台风事例轨迹预测中,取得显著的 改进效果。这些成果标志着台风预测进入新时代,利用对流 解析分辨率结合适应性网格细化策略, 可以在最小计算负 担下提升灾害准备和响应能力。

研究人员介绍, 他们计划在不同海域进一步验证其方 法,深入理解并改进模型物理机制,从而扩大其在全球范围 内的应用。

相关论文信息:

https://doi.org/10.1016/j.scib.2025.01.032

大连理工大学

基于荧光蛋白技术

本报讯(记者孙丹宁) 荧光蛋白探针因其本身属于蛋 白,具有比普通化学类荧光探针更好的生物相容性,同时兼

取和具有强大的分化潜力,在疾病治疗和医美领域备受关 注。然而,传统的 MSCs 检测鉴定方法通常需要杀死细胞,

团队首先开发出一种名为 LV-cp 的新型非侵入式炭 光蛋白探针,能够无损伤鉴定 MSCs,同时可以实时监测其 分化过程。LV-cp 探针基于"开启型"荧光蛋白,当探针与 MSCs 结合时, 荧光蛋白的荧光信号会显著增强, 从而实现 高精度的细胞检测和识别。此外,LV-cp 探针还展示了其 在细胞纯化中的应用潜力。通过流式细胞术,团队成功分 离出高纯度的 MSCs,并验证了分选后的细胞在分化过程 抗原 - 抗体免疫反应的 MSCs 检测方法,应用前景广阔,有

发出一种检测活细胞内应力分布的探针 MaSS,实现了细胞 膜与细胞骨型之间应力状态的可视化检测 通过该探针 团 队发现肿瘤细胞上下表面之间的固有应力存在明显差异, 通过药物干扰破坏这种差异后,肿瘤细胞的迁移能力消失。 说明这种应力极性差异可能是肿瘤细胞发生迁移的前提, 这一发现为抑制肿瘤转移提供了新的治疗策略, 也为肿瘤

https://doi.org/10.1021/acssensors.4c00628

研发系列新型探针

具高灵敏度、高特异性、使用方便等优势,因而在医疗健康 等领域具有巨大应用潜力。近日,大连理工大学教授刘波团 队基于荧光蛋白技术研发了系列新型探针,于《美国化学会 传感器》连续发表两篇论文。 在生物医学研究中,间充质干细胞(MSCs)因其易于获

无法实现实时监测。

中具有良好的功能完整性。这一技术大大简化了传统基于 望在组织工程、干细胞治疗和医美等领域发挥重要作用。 随后,团队基于荧光蛋白的荧光共振能量转移技术,研

刘通:仰望"星空",志在"真空" 研究提供了有力的科研工具。 相关论文信息: https://doi.org/10.1021/acssensors.4c02356

作为一名资深天文爱好者,中国科学 院苏州纳米技术与纳米仿生研究所(以下 简称苏州纳米所) 高级工程师刘通从小就 对星空充满好奇。然而,喜欢从望远镜中仰 望星空的刘通,却没有选择学习天文专业, 而是考入哈尔滨工业大学学习物理,后来 又从事材料科学方面的研究。他学会了使 用电子显微镜观测微观结构, 闯入了另一 片浩瀚的微观物质世界的"星空"。

在苏州独墅湖畔的苏州纳米所, 有件 探索微观物质世界的利器。它便是能够提 供堪比太空真空环境的重大科学装置-纳米真空互联实验站(Nano-X)。作为纳米 领域重大科学装置,Nano-X 背后有无数 辛勤的研究人员在默默付出汗水, 刘通就 是其中一员。

胸怀"星空",结缘 Nano-X

2008年,正在攻读硕士的刘通偶然听 了一场报告,报告人是如今担任苏州纳米所 所长的王强斌。彼时,王强斌刚刚回国参与苏 州纳米所筹建工作, 他受研究所委派在全 国各地的高校四处奔走,招揽人才。

这场报告激发了刘通对纳米材料的兴 趣。听完报告,他便有了到苏州纳米所工作 的想法。于是, 2015年从哈尔滨工业大学 博士一毕业, 刘通就选择到苏州纳米所从 事博士后研究工作。

刘通来到苏州纳米所时正赶上 Nano-X 筹建,虽然爱好天文的他没能探 索浩瀚无垠的宇宙星空,但 Nano-X 充满 未知挑战的工作, 为刘通提供了另一片自 由探索的"星空"。

Nano-X 是世界首个按国家重大科技 基础设施标准在建的集材料生长、器件加 工、测试分析为一体的纳米领域重大科学 装置。它通过超高真空管道把材料生长、 测试表征等各类功能设备相互连接。由于 具有 10⁻⁸ Pa 的真空度, Nano-X 能够实现 原子尺度上材料与相关器件本征规律的

Nano-X 在推动纳米技术研究方面的 巨大作用和展现出的广阔应用前景, 促使 刘通立志投身"真空"事业,为研究微观物 质世界的奥秘提供尖端的技术手段,从而 延续探索"星空"的梦想。

要有梦想,更要不懈努力

刘通刚到苏州纳米所时,Nano-X连 一台仪器设备都没有,厂房也没有动工。他 每天的工作就是规划、调整未来的实验场 地、设备配置等。

由于看不到实验室实际的样子,时间 长,刘通有时会感到迷茫,工作一时没了

"艰难方显勇毅,磨砺始得玉成。"彷徨 中的刘通再次把目光投向星空,闪耀的"南 仁东星"吸引了他的注意。胸怀宏大梦想的 "人民科学家"南仁东用毕生心血,历时22 年建成了举世瞩目的天文领域大科学装 置——FAST,极大拓展了人类观察宇宙星

南仁东敢为人先、坚毅执着的科学精 神深深打动了刘通,也使他深受鼓舞,彻底 扫除了笼罩在心中的彷徨和迷茫。

"南仁东用实际行动告诉我们,人不仅 要有梦想, 更要有为了梦想而不懈努力的决 心和毅力。"想明白这些后,刘通充满干劲儿, 商讨仪器设备的采购规划、讨论实验厂房的 需求、设计真空互联管道与样品传送的核心 机构、憧憬未来可以在真空互联中实现的实 验计划……每天都过得很充实。

在实验站, 刘通主要负责聚焦离子束 显微镜设备,他在该设备的技术开发与服 务上颇有建树。在一次利用真空互联装置 进行实验时,细心的刘通发现一个关键问 题:使用聚焦离子束显微镜处理样品表面 时,样品表面需要与水平方向呈 45 度左右 的夹角才可以进行实验, 但这样处理后的 样品通过真空互联传送到其他测试设备中 依然是倾斜状态, 而测试设备大多不能倾 斜太大角度,只能在斜面上测试,因此无法 获得最精确的测试结果。

针对这个问题, 刘通自主设计了新型 样品载台,通过简单操作就可以在超高真 空中实现样品从 45 度倾斜到 0 度水平的 自由转换,有效提高了样品测试精度。

刘通还深入钻研聚焦离子束显微镜的 关键技术开发,并攻克多项关键技术难题, 为用户提供微纳结构分析与解决方案,尤 其是在半导体器件失效分析、高难度透射电 镜样品制备等方面有突出贡献, 已累计服务 用户超过9000小时。他针对微米级颗粒制备 透射电镜样品困难的关键技术问题, 开发了 全新的样品制备方法,创新性地将微米级颗 粒制样方法全部在真空腔体中进行, 大大缩 短了制样时间,提高了样品测试质量,实现了 该领域的技术突破。

敢为人先,坚毅执着

2022年6月, 刘通所在的大科学装置 党支部成立了"南仁东大科学装置青年突 击队"。作为支部组织委员的刘通成为突击 队中的骨干成员。他协助党支部组织召开 突击队全体队员会议,紧紧围绕部门年度

刘通在纳米真空互联实验站。

重点工作,深入研讨工作中存在的问题,分 析问题背后的原因,提出改进工作的举措, 历经多次优化完善, 最终凝练出"三大会 战"攻坚行动项目。

苏州纳米所供图

刘通不仅以身作则,发挥党员先锋模 范作用,兢兢业业做好本职工作,还积极带 动突击队的党员和群众勇挑重担, 为建成 国际领先的大科学装置攻坚克难。

加入苏州纳米所以来, 刘通全程参与 了 NANO-X 一期建设与验收、二期建设 与验收以及三期规划, 承担多个真空互联 技术开发、真空设备开发以及真空互联实 验项目,设计并完成多台设备与真空管道 的对接和样品传送,保障样品在真空管道 中顺畅传送,验证真空互联技术的必要性 和实用性,同时与高校和企业联合开展多

个技术攻关项目。 "敢为人先,坚毅执着"是刘通一直秉 持的理念。如今,已经扎根苏州纳米所10 年的他依然志在"真空",初心不改,在真空 互联的前沿领域不断耕耘, 凭借敢为人先 的创新精神, 坚毅执着地迈向抢占纳米科 技制高点的新征程。

(作者单位:中国科学院苏州纳米所)

新研究开辟克罗恩病

上海交通大学医学院附属仁济医院

用药治疗新方向 本报讯(见习记者江庆龄)上海交通大学医学院附属仁 济医院消化科研究员洪洁团队及合作者首次阐明,以普拉

梭菌为代表的肠道微生物驱动的 L- 鸟氨酸生物合成可显 著增强乌司奴单抗的临床疗效, 为克罗恩病治疗提供了新 的生物标志物,也开辟了乌司奴单抗联合用药治疗的新方 向。近日,相关研究发表于《细胞代谢》。 克罗恩病是一种诱因不明、影响整个消化道的慢性炎 性肉芽肿性疾病,可能导致肠道狭窄、穿孔等症状,有高危

复发倾向。肠道微生物在炎症性肠病的发展中起着至关重 要的作用,它们通过复杂的代谢活动与宿主建立动态共生 关系,调节宿主的正常生理功能和疾病进程。 研究团队对85名接受乌司奴单抗治疗的克罗恩病患

者进行了粪便微生物群分析,发现获得临床缓解的病人体 内微生物群多样性更加丰富,多种有益菌群显著增多,并且 与炎症指标显著相关。

多组学联合分析结果显示,肠道菌群驱动合成的 L-鸟氨酸与乌司奴单抗展现出较好的协同抗炎能力, 该结果 在多种肠炎动物模型中得到了验证。

研究团队进一步进行了前瞻性临床试验, 发现乌司奴 单抗耐药的克罗恩病患者联合使用乌司奴单抗及 L- 鸟氨 酸治疗后,其病情活动程度和钙卫蛋白水平降低,内镜缓解 率和组织学评分显著改善。研究结果表明,乌司奴单抗联合 L- 鸟氨酸可能为克罗恩病患者提供了一种新的治疗策略, 特别是对于乌司奴治疗耐药的患者,该联合方案有可能为 其恢复疗效带来新希望。

相关论文信息:

https://doi.org/10.1016/j.cmet.2025.01.007