中国科学报

十年追"凶",他们找到植物吸收根短寿的原因

■本报记者 赵宇彤

十年树木,百年树人。树木的生长是一 个漫长的旅程,而其"根本"——最细的根 尖,却有着截然不同的生命节奏。

"吸收根是植物最细的根,其寿命是预 测生态系统碳和养分循环的关键参数。"中 国科学院地理科学与资源研究所研究员马 泽清告诉《中国科学报》,吸收根是植物根系 的前两级根,是根系最末端的分支,主要承 担吸收水分和养分的功能。

然而,在复杂的土壤环境中,究竟哪些 生物因素影响了吸收根的寿命?

经过 10 年追踪, 马泽清团队发现,亚 热带不同树种吸收根寿命存在显著差异, 短至 91 天、长至 545 天,土壤病原微生物 对吸收根寿命的影响超过植食性线虫,且 外源性生物因子与根寿命之间存在显著的 非线性负相关关系。近日,相关研究成果发 表于《生态学快报》。

对此,审稿人和编辑评价:"这是一项极 具创新性与重要性的研究,不仅为吸收根寿 命提供了多维的定量研究框架,增进了对 根系寿命控制因子的机制性理解,还填补 了亚热带根系寿命多样性的研究空白,为 研究根系功能和地下生物多样性形成奠定

寻"根"究底

'吸收根像树木的'吸管',负责吸收水 分和养分,其寿命长短直接影响森林的碳循 环和养分循环。"马泽清打了个比方,传统研 究大多关注"吸管"本身的"材质"——直径 大且氮含量低的吸收根通常寿命更长。

然而,在现实复杂的土壤环境中,各种 各样的生物活动都直接影响着吸收根的生 存。"不少人认为,根越粗,其寿命就越长。"马 泽清指出,这只是"内因",线虫的啃咬、病菌和 细菌的侵扰, 对吸收根的影响均未得到量化。 植物的吸收根到底是"被吃死的"还是"病死 的"?他们对这一问题产生了兴趣。

因此,马泽清团队着手寻找啃咬"吸管" 的"真凶"。他们率先瞄准亚热带生态系统中 的不同树种,分析了16个亚热带树种的吸

同时,该团队还系统采集了根形态、构 型、化学功能性状、叶片功能性状、根际线虫 密度及微生物群落等多维数据,全面评估了 内源与外源生物因子对吸收根寿命的影响。

研究结果令团队感到惊讶。传统观念 中,食草线虫会严重破坏植物根系,而他 们发现,土壤病原微生物竟然才是"主要

"病原真菌、病原细菌和食草线虫对植物 吸收根的寿命影响达 36%,其中食草线虫仅占 8%,病原微生物的贡献高达28%。"马泽清说。

为什么会有如此显著的差异? 进一步研 究发现,原来植食性线虫主要以机械损伤和 化学诱导间接影响根寿命,作用相对缓和, 但病原真菌则通过分泌细胞壁降解酶类,加 速植物根系组织的腐烂。

更为关键的是,外源生物因子对吸收根 寿命的影响并非线性的,而是存在一个临界 值,超过该值后,寿命下降趋势趋于平缓。

"在面对生物胁迫时,植物吸收根可能 采取两种策略——'保守长寿命'型与'机会 主义短寿命'型。"马泽清说,比如有的植物 根系不怕被"吃","吃"得越快生长得越快; 有的一出生就有极强的防御功能,难以被"吃 掉";有的则更加灵活,只有外源生物因子靠近 时,才有所反应。"这都反映出根系与土壤生物 在长期协同进化中形成的动态平衡。

十年追"凶"

别看这些根小, 却有着很大的影响力。 根系死亡时,土壤微生物通过分解其中的有 机物质,将碳以二氧化碳等形式释放回土 壤,通过土壤碳循环影响全球碳平衡和气候

然而,全球现有数据多集中在温带地 区,缺乏跨生物群系的、标准统一的吸收根 寿命数据,"且多关注食草线虫或某类微生 物等单一因子,缺乏多因子分析系统"。研究 团队将目光投向亚热带森林地区,这里生物 多样性丰富、交互复杂,对量化不同因子的 相对贡献提出了更高要求。

这是一片尚未充分探索的领域,但他们 决定迎难而上。

2014年,团队成员李亮在江西樟树亚热 带同质园布设了128根微根管,这是一种透 明的玻璃管或塑料管,"埋"在土壤中实时监 测根系的动态变化。研究人员每两周定期采 集一次数据,经过两年观察,共采集了61221 张根系图像

"6万多张图像包含了16个树种,每张 都需要人工提取根的出生和死亡日期、直 径、根长等信息,工作量巨大。"论文第一作 者、中国科学院地理科学与资源研究所助理 研究员曾文静说,"由于不同树种的根形态 相似,需仔细甄别,必要时还要挖掘根系复 核确认。"有一次,他们花了不少心血进行甄 别, 却发现对6种根系的区分出现错误,-切只能推倒重来。

这样的挫折,对马泽清团队而言不足为 惧。2020年,他们开始进行样品采集与数据

"研究涉及微生物高通量测序、线虫鉴 定和根性状提取,数据量大,分析非常复杂, 需要多学科背景。"马泽清只能向土壤动物 学、地下食物网、统计学等不同专业的专家 求助。为防止林龄、系统发育和种植密度对 根系的影响,他们引入随机变量增强模型稳 健性,通过制定统一标准、多人协作和人工 复核,最终完成了6万多张根系图像的数据 提取工作,又采用结构方程模型和混合效应 模型等统计方法,整合多维度数据,揭示了 各因子之间的复杂关系。

从 2014 年满怀期待地建立微根管观测系 统,到2024年开始撰写论文、2025年发表,这 场 10 年追"凶"的旅程终于结出硕果。

"我们构建了全球首个涵盖五大生物群 系的吸收根寿命可比数据集,并首次量化了 病原微生物对吸收根寿命的影响远超植食 性线虫。"马泽清说。

探索仍在继续

探索, 是马泽清团队为这项历时 10 年 的研究总结的关键词。

"这项研究从问题提出、技术方法选择到 结论发现,几乎每一步都在探索未知。我们探 索了地下世界的复杂性、多因子交互的非线性 规律。"在此过程中,马泽清团队不断深化对数 据的理解,提升分析的严谨性,"这是一个充满 挑战但也极具成就感的探索过程"

"'病原微生物影响大于食草线虫'这一 结论也得到了审稿人的重视。"马泽清表示, 该研究填补了亚热带森林吸收根寿命研究 的空白,揭示了各种生物因素和根系动态间 存在复杂相互作用和微妙平衡。

尤其在气候变暖与氮沉降加剧的背景下, 病原微生物的激活可能进一步加速吸收根周 转,进一步影响亚热带森林的生态系统功能。

"因此,在预测全球碳循环和群落动态 时,必须综合考虑根系功能性状与土壤生物 因子的交互作用。"马泽清强调,这对预测全球 气候变化下的碳循环、森林健康管理乃至生态 系统稳定性具有重要参考价值。

不过,在马泽清眼中,这只是一个开始。 "目前我们的研究以野外观测到的相关 性关系为主,尚未通过实验完全验证其因果 关系。"马泽清表示,全球气候变暖与氮沉降 加剧也提出了更严峻的挑战,需要对其与生 物因子的交互效应展开进一步研究。

相关论文信息:

https://doi.org/10.1111/ele.70210

王艳芬当选发展中国家 妇女科学组织副主席

本报讯(记者冯丽妃)11月3日,发展中国家妇女科 学组织(OWSD)第七届全体会议在哥伦比亚波哥大开幕。 大会选举产生了新一届 OWSD 执行委员会。中国科学院 大学党委副书记、副校长王艳芬高票当选该组织副主席。 这标志着中国科学家在国际科学组织中的影响力进一步 提升,也体现了国际社会对中国在推动全球科技发展与性 别平等领域所作贡献的充分肯定。

王艳芬是生态学领域知名学者,长期从事草地生 态学与全球变化研究。她在中国科学院大学担任领导 职务期间,积极推动国际科技合作与人才培养,特别是 在支持女性科研人员发展方面作出了重要贡献。

自 2023 年担任 OWSD 中国委员会主席以来,王艳 芬积极发挥 OWSD 平台作用,举办女性科学家论坛和各 类培训,推动我国女科技工作者与国际同行的合作与交 流,不断提升我国女科技工作者在国际舞台的显示度。

"我很荣幸能够担任这一职务,这是一份重要的责 任和义务。"王艳芬对《中国科学报》说,"我将致力于促 进亚太地区科技界的团结协作,特别是为女性科研人 员创造更多发展机会,共同应对全球性挑战。

近日,中国科学院长春应用化学研究所研究员周敏团队 自主研发的新能源新材料智慧实验室"人工智能(AI)- 电化 学家"正式亮相。该平台以 AI 赋能材料研发,涵盖了材料设 计、合成、制备、表征、筛选及预测全流程,形成了完整的高通 量实验解决方案,单日研发效率可达 200 组样品。

在技术层面,"AI- 电化学家"实现了实验设计智能化、仪 器操作无人化、数据采集高通量化、研发流程自动化四大突 破。图为"AI- 电化学家"平台。

本报记者田瑞颖报道 中国科学院长春应用化学研究所供图

■发现·进展

四川大学

黑磷纳米片有望成为 肿瘤抑制剂和免疫调节剂

本报讯(记者杨晨)四川大学生物医学工程学院教授樊 渝江和研究员孙勇揭示了黑磷纳米片通过大幅增强线粒体 氧化磷酸化,逆转肿瘤细胞固有的糖酵解代谢方式,在抑制 肿瘤增殖的同时激活免疫,为肿瘤免疫治疗带来新思路。近 日,相关研究成果发表于《自然-纳米技术》。

调节细胞内磷代谢会影响多种生物合成过程并可能调 控肿瘤细胞进展。研究人员通过转录组联合磷酸化蛋白组 确认,外源性聚乙二醇化黑磷纳米片在黑色素瘤细胞内代 谢为磷酸盐,调节多个重要信号通路,抑制黑色素瘤细胞 中促存活基因表达,降低 PD-L1 蛋白表达,从而阻碍肿瘤

荷瘤小鼠血清中增加的促炎细胞因子含量、高表达的肿 瘤浸润淋巴细胞 CD8+T 细胞,以及肿瘤和淋巴结中低表达 的 CD4+调节性 T细胞,证实了黑磷纳米片对机体免疫的激 活。在脾脏中,黑磷纳米片介导了效应记忆 CD8+T 细胞的 激活,诱导了免疫微环境的"正向调节",同时黑磷纳米片协 同 PD-1/PD-L1 抑制剂显著提升了免疫疗效。

这种肿瘤抑制和持久性免疫激活效应在多种荷瘤小鼠 模型中得到证实。而这些结果表明,黑磷纳米片有望成为肿 瘤抑制剂和免疫调节剂。

相关论文信息:

https://doi.org/10.1038/s41565-025-02022-y

中国科学院亚热带农业生态研究所

三峡大坝运行后 洞庭湖湿地植被格局改变

本报讯(记者王昊昊通讯员高翔)中国科学院亚热带农业 生态研究所研究员谢永宏团队发现,三峡大坝运行后,洞庭湖 湿地植被格局改变了。日前,相关研究成果发表于《生态指标》。

作为世界上最大的水利工程,三峡大坝自 2003 年蓄水 以来,显著改变了长江中下游的水文环境,尤其对下游通江 湖泊洞庭湖的水文情势和植被格局产生了巨大影响。尽管之 前有研究关注水文变化与植被响应,但三峡大坝如何通过改 变人水口、出水口的水文条件,进而影响植物分布和格局演

针对这一科学问题, 研究团队基于长期水文观测数据。 遥感影像解译和 MIKE21 水动力模型模拟,对比分析了三峡 大坝运行前后洞庭湖淹水格局与植被格局的时空演变特征, 并通过设置多种水文情景,首次厘清了湖泊入水口与出水口 水文条件对植被变化的贡献。

结果表明,三峡大坝运行后,长江入洞庭湖三口(松滋 口、太平口、藕池口)的年均水量和城陵矶的年均水位都明显 下降,且两者的年内变化特征在大坝运行前后存在差异,其 中 7 月至 12 月较大坝运行前减少,1 月至 3 月增加;洞庭湖 平均被水淹的时间少了9天,平均淹水深度降低0.25米,其 中东洞庭湖变化最显著。

同时,洞庭湖植被面积扩大并向湖心移动,其中芦苇面 积增加且生长位置明显变低,挤占了苔草的生长空间;苔草 适合被水淹 132 天到 240 天, 芦苇适合被水淹 110 天到 186 天,说明水少时芦苇的生存竞争力更强;城陵矶出水口水位 下降是洞庭湖植物变化的主要原因,对比三口四水(湘江、资 江、沅江、澧水),城陵矶水文条件对苔草和芦苇最适宜生长 面积的贡献率分别为 79.26%和 66.62%。

相关论文信息:

华东理工大学

https://doi.org/10.1016/j.ecolind.2025.114307

又快又精,这支团队交出技能大赛"双优答卷"

■本报见习记者 蒲雅杰

"唰——"初秋时节,北京八达岭的海陀 塔下,中国科学院空天信息创新研究院(以 下简称空天院)的5架无人机同时升空,仅 用 10 分钟便完成了对海陀塔目标区域的数 据扫描。半小时后,一套精确到3厘米分辨 率的实景三维模型已呈现在电脑上

在近日举行的中国科学院第四届职工 技能大赛智能无人机应用领域比赛中,综合 "三维模型智能构建"和"特定目标智能识别 及定位"两个赛道的高评分,空天院参赛团 队一举夺得第一名。

"获得好成绩,得益于全体成员多年来 在遥感技术、飞行控制与数据处理领域的技 术积累。面向千行百业的实际需求,探索智 能无人机遥感技术的深度应用,我们充满了 动力。"空天院参赛团队领队、副研究员时丕 龙说。

聚是一团火

今年6月,收到比赛通知后,时丕龙第 一时间召集团队成员。他最先想到的,便是 此前在空天院无人机遥感技能大赛中并肩 作战的伙伴。很快,一支8人团队集结完毕。

智能无人机应用是首次在中国科学院 职工技能大赛中举办的项目,比赛细则长达 27页。时丕龙坦言:"虽然过往的默契合作奠 定了基础,但团队成员研读细则后,发现比 赛的难度超过预期。

"三维建模任务要求构建海陀塔及周边 环境的实景三维模型,高精度还原塔顶镂空 的金属五环结构等局部细节信息。"团队成 员、空天院高级工程师黎东介绍,"目标识别 任务则要求运用无人机识别不同材质的静 态标靶,以及隐匿在树下或草丛中的羊和 马。在短时间内完成这些并非易事。

空天院团队迎难而上,针对任务展开了 细致的安排和部署。"比如,为了实现对局部 细节的精细建模,我们挑选并组装出5架协 同作业的无人机。通过多层航线设计,将高 空整体航线覆盖与贴近塔体的环绕飞行相 结合,确保关键部位获得足够高的重叠度与 分辨率。"黎东说。

"我们聚是一团火。"团队最年轻的"90 后"成员、空天院助理工程师张银杏感慨道, "以往,我一次最多使用两架无人机协调作 业。但这次比赛中,我和经验丰富的专家操 控5架无人机同时、同地完成任务。这启发 我在今后的工作中要更注重团队的协同与

速度与精度的最优解

地上放置着几块相同的板子,无人机能 否识别出这是一块木板、金属板还是塑料 板?不仅可以,还很快。空天院团队在比赛 中用时不到15分钟,便实现了对这些静 态标靶材质的百分百准确识别。赛后,不 少参赛团队称赞他们的表现是"速度与精 度的最优解"

"速度的提升得益于严格的区域与时 间规划;而高精度则源于热红外、多光谱

相机的协同使用及成员的专业研判。"团 队成员、空天院工程师陈强表示,大家在 多年来各自领域技术积累的基础上,有协 调、有计划、分区域——"这是能出好成绩 的关键"

"无人机是空间技术体系的关键一环。" 时丕龙说,"从高空的卫星,到中空的有人 机,再到贴近地表的无人机及地面监测,我 们构建的是一个立体的观测网络。"

他们日常的工作,正是利用这个网络进 行持续监测与评估。

2017年8月8日,四川九寨沟地区发生 了 7.0 级地震。时丕龙迅速参与灾后恢复重 建空天地一体化监测评估工作,让无人机第 一时间飞赴现场,评估道路修复进度、监测 滑坡动态,为决策提供即时依据。

在农业领域,对作物叶片的光谱特征进 行分析,可以反演出叶绿素含量、水分胁迫 程度,甚至提前发现病虫害。"高光谱数据经 过反演后,可指导无人机进行精准施药,既 节约农药,又减少环境污染。"主要从事高光 谱遥感研究的张银杏介绍。

构建未来数字基底

"在数字遗产领域,无人机以灵活、高 分辨率的特性,扮演着不可替代的角色。 时丕龙特别提到,目前他们正利用这些技 术,协助联合国教科文组织国际自然与文 化遗产空间技术中心一起守护全球文化 与自然遗产。

空天院参赛团队在比赛中操纵 5 架无 受访者供图 人机同时执行任务。

"这一过程的社会价值显而易见,通过 三维遥感技术为文物'数字留档',让历史在 数据中永生。精细的三维模型也可用于虚拟 现实(VR)文化旅游,比如为《黑神话:悟空》 这类游戏提供实景素材,既在无形中向世界 传播了中国文化,也带来了可观的经济价 值。"时丕龙说。

同时,市场需求也推动了技术创新。黎 东表示,除了无人机遥感技术研究,他们还 自主研制了地面数据采集设备,如手持激光 扫描仪等,实现了不同平台、不同视角的多 源数据融合。

"当前的技术仍停留在将空中图像和数 据传回地面后进行人工智能算法识别阶 段。"陈强表示,行业正朝着"算力上天"迈 进。"随着无人机算力能耗比的提升,我们计 划把地面算力移向天空,让无人机在空中就 能完成精准目标识别。

新型催化机制助力 高效污水处理

本报讯(见习记者江庆龄)华东理工大学教授张金龙与 副教授周亮联合团队提出"非接触电子转移过程"(NCETP) 新型催化机制,在类芬顿反应中展现出极高的污染物降解效 率与选择性,为高效污水处理技术的发展提供了新思路。相 关研究成果近日发表于《水研究》。

抗生素在水体中的残留已成为全球性环境问题。基于自 由基的高级氧化工艺虽能有效降解此类污染物,但存在寿命 短、易受水质干扰、氧化剂利用率低等问题。电子转移过程是 一种非自由基路径,具有高选择性、抗干扰性强等优势,但在 实际应用中仍面临电子传递效率低、副反应多等挑战。

研究人员通过"记忆效应"与离子交换策略,在层状双金 属氢氧化物 / 过氧单硫酸盐(LDH/PMS)体系中提出了 NCETP,并成功构建了具有 HSO5-空位的铁钴 LDH 催化剂

CL_{tso}能够优先吸附并锚定 PMS 于层间,而左氧氟沙星 (LVX)等大分子污染物则吸附在LDH层外,两者无法直接 接触,由此实现污染物与氧化剂在催化剂两侧的物理隔离。 反应中,通过 LDH 内外层的单配位氧位点构建,氢桥完成快 速电子转移,完全避免了自由基副反应的发生。

实验表明,NCETP中的电子转移数量比传统电子转移 过程提高了 2.58 倍,LVX 在 30 分钟内降解率超过 95%,且 系统在宽 pH 值范围和复杂水质条件下仍保持高效稳定。

研究团队进一步构建了以 CL_{HSO} 负载的聚酯纤维为填 料的连续流反应器。在 24 小时的连续运行中,系统对 LVX 的降解率始终维持在99%以上,且金属浸出浓度远低于国家 排放标准。此外,经连续流处理后的染料废水色度显著下降。 毒性评估表明,降解产物生态毒性显著低于 LVX 原药,且处 理后的溶液对大肠杆菌不再具有胁迫影响,显示出良好的环 境友好性。

相关论文信息:

https://doi.org/10.1016/j.watres.2025.124796