中國科學報 3

捕捉轨道"毫米级"隐患的"智慧大脑"

■本报记者 陈彬 通讯员 王瑞霞

"请注意! K758+536 处波形出现 1.1

当高铁飞驰,乘客尽享便捷出行时, 多数人并不知道,有一个"智慧大脑"正 在持续监控着来自轨道线路的检测数 据,并以每分钟300公里的高速运算对 轨道运行数据进行实时分析, 及时向工 作人员发出隐患预警。

钢轨在车轮反复碾轧下的轻微形变、 温度变化引发的些许位移……这些在常人 眼中微不足道的变化, 却是威胁高铁安全 的巨大隐患。而那个实时关注这些隐患的 "智慧大脑",便是由北京交通大学(以下简 称北交大)交通运输学院教授徐鹏团队研 发的轨道智能诊断分析系统。

据介绍,该系统可以通过高精度定 位与高分辨率辨识技术,实时捕捉轨道 上的毫米级变化,成功破解了我国轨道 检测领域长期存在的技术难题。目前,该 系统已在全国国家铁路线广泛应用。

"捕捉 1 毫米变化"

实验室里,大屏幕上数据呈水波状 持续跳动。徐鹏指着起伏的曲线解释: "这条波线就像轨道的'健康脉搏',哪怕 毫米级的波动变化,系统都能第一时间 精准捕捉。

这份对"毫米级"的执着,源于他 10 年前在南昌铁路局的一段挂职经历。

彼时,徐鹏刚刚入职北交大,便被学 校派往南昌铁路局。在那里,他目睹了工 务段工程师的双重"窘境"——轨道检测 全靠检测车在固定时间段采集数据,难 以实时反馈轨道的动态变化, 容易漏判 潜在隐患;同时,数据分析工程师需要在 海量检测数据中,逐段人工"筛查"轨道 变化点位,不仅耗时耗力,准确性也难以 保证。这成为一直困扰行业的"老大难"

徐鹏(右一)和学生讨论轨道变形预 受访者供图 警技术。

"当时我就想,必须用技术把大家从 '人海战术'里解放出来!""捕捉1毫米 变化"成为徐鹏心中始终念念不忘、执着 追求的目标。

此后,他扎根南昌工务段,跟着工程 师们跑现场、测数据。铁轨旁的碎石子磨 破了他的裤脚,深夜的检测车里经常有 他的身影。

"实验室的理论要经得住一线的检 "徐鹏常对团队说。正是这份从实验 室到铁轨、从理论到实践的"双向奔赴", 让"捕捉1毫米变化"从目标变成了可落 地的技术。

从"数据孤岛"到"智慧大脑"

摆在徐鹏面前的第一个挑战便是如 何打破横亘在前的"数据孤岛"

"过去检测车每完成一趟任务输出 一组数据,数据之间零散无序,就像没贴 标签的零件,既没有统一里程标记,也没 法和往期数据比对。"徐鹏解释说。

为了啃下这块"硬骨头",团队耗时整 整一年,成功研发出基于动态规划的柔性 匹配算法。这套算法如同给数据安装了精 准的"定位系统",将分趟采集的"无序数 据"转化为统一里程坐标下的"有序链条", 不仅实现了多周期数据的自动比对,更为 后续的智能分析奠定了基石。

以该算法为基础,通过此后多年的努 力,团队接连攻克了多项核心技术:构建轨 道最细粒度时空变化趋势智能感知与辨识 方法及其并行计算技术、基于多变点识别 的轨道多周期劣化精细建模方法……直 至最终为系统装上"智慧大脑"。

徐鹏介绍,该系统就像一个具有多 维分析能力的智能决策助手, 既能绘制 同一点位的波动曲线,精准分析变形,又 能自动比对任意时段数据,将轨道健康 状态转化为直观的可视化"波形图",让 轨道运行状态一目了然,还能给出轨道 预测性维修区段建议, 实现了轨道维修 从"周期修 + 人工经验"到基于未来状态 的按需维修。

"讨去,排查轨道病害就像大海捞 针。现在我们通过系统能够在1分钟内 检测 300 公里线路上超过 1 毫米的变形 点位,还能自动生成'病害分布图'和分 级预警。"徐鹏言语间难掩自豪。

"把论文写在钢轨上"

在徐鹏看来, 系统的生命力源于持 续迭代,不能闭门造车,而是要扎根一 线,摸清工程师们真正需要什么。为此, 他每年都会带着学生来到铁路检修现 场,与工程师们面对面交流,逐条记录下 他们对系统的反馈:哪些功能"用着顺 手"、哪些模块"需要改进"、哪些场景"亟

通过这些"沾着泥土"的一线调

研,团队精准捕捉到系统的多个关键 痛点,并进行了针对性的迭代。10年 来,该系统根据一线反馈共完成7次 重大升级,显著提升了轨道检测的精 准度和可靠性。

在这方面,最"有感"的是高铁一线 的工作人员。

中国铁路南昌高铁基础设施段管辖 着 1171 公里的高铁轨道。该段副段长左 旋告诉《中国科学报》,此前,他们分析一 趟动检车数据,工程师连轴转要3天,而 如今只需要2个小时就能出结果,1天内 就能完成风险的排查与复核。

"仅 2021 年以来,该系统在南昌局 识别 CRTS Ⅱ型板变化点 3670 处,现场 复核胀板 236 处,实现管内'零胀板晃车 事件'。"左旋说。

凭着这股子"把论文写在钢轨上" 的执着,徐鹏团队成功蹚出了一条"实 践一研发一再迭代"的产学研协同之 路。这份长达 10 年之久的坚持也换来 了行业的认可。

截至 2024 年 5 月, 徐鹏带领团队 研发的"基于动态检测数据的轨道变形 分析系统"已在北京、济南、郑州、武汉 等全国 11 个铁路局的高铁和普铁线路 落地应用,覆盖里程相当于绕地球 4 圈,确保了铁路轨道在恶劣运行环境下 的服役安全。

同时,作为新技术、新产品,该系 统也通过了中国国家铁路集团有限公 司的试用评审和技术评审,被纳入中 国国家铁路集团有限公司《高速铁路 线路维修规则》和《高速铁路无砟轨道 防胀管理办法》。

徐鹏表示,未来团队将持续深耕铁 路一线场景,融合人工智能大模型的深 度学习优势,为"智慧大脑"打造更强大 的智能内核。

全球首款量子科学计算平台问世

本报讯(见习记者江庆龄 实习 生杨雨辰)11月22日,上海交通大 学量子科学计算团队发布全球首 款量子科学计算平台 UnitaryLab, 致力于通过覆盖偏微分方程求解、 线性代数、优化与机器学习等方向 的量子算法,为科学与工程中的高 难度问题提供高效解决方案。

据介绍, UnitaryLab 1.0 版聚焦 于科学计算的核心——常/偏微 分方程求解。其核心优势源于团队 提出的原创"薛定谔化"系列量子 算法,该算法将偏微分方程转化为 量子系统可直接处理的酉演化形 式,成功解决了传统量子算法难以 适配复杂工程计算的问题。

这一突破性框架极大拓展了

量子计算的应用边界,被国家自然 科学基金委 2024 年度报告选为数 学领域唯一代表性成果。理论上, 该技术可将3维方程的计算效率 提高6倍以上,将5维方程效率提 升 2.5 万倍以上,对 9 维问题可实 现万亿倍级的加速效果。

据悉,该平台发布后经过海内 外科研团队的积极测试,并与国内 量子硬件头部企业达成真机验证 合作。同时,团队正与工业设计仿 真、系统仿真软件团队建立合作, 探索量子计算在不同领域的赋能 方案。未来,团队将继续深耕量子 算法创新,研发特色算法适配的专 用硬件设备,推动软硬件一体化解 决方案的规模化落地。

2025 量子科技和产业大会发布多项成果

本报讯(记者王敏)近日,以 "百年量子·智启未来"为主题的 2025 量子科技和产业大会在安徽 合肥举行。一系列重大量子科技和 产业成果在会上亮相,包括"祖冲 之三号"刷新量子计算优越性纪 录;跨越12900公里,洲际星地量 子密钥分发再创纪录;中国电信发 布全球最大规模、互联互通、广泛 应用的量子安全基础设施;国家电 网发布面向分布式新能源量子加 密系列产品;国盾量子与中电信量 子集团联合发布面向千比特规模 设计的超导量子计算系统解决方 案;中国电科发布超导量子计算机 用 XS1000 型稀释制冷机等。

大会现场发布中央企业量子 人才科创空间,启动了国家高新区 量子产业协同创新网络、量子密码 基础设施标准化技术联盟,多家单 位集中签约了量子科技和产业中 心金融支持项目,视频发布了量子 产业应用行动方案。

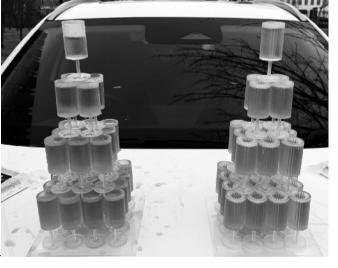
会上,9家具备量子产业发展 优势的国家高新区共同组建成国 家高新区量子产业协同创新网 络,将深化量子科技产学研融合, 加速成果转化、推动产业化应用; 合肥实验室牵头量子、密码、安 全、通信等领域 36 家顶尖力量, 启动量子密码基础设施标准化技 术联盟, 为量子通信重大应用提 供关键指引;安徽启动了量子信 息"千家场景"行动,规划建设量 子产业先导区,正式发布量子产 业应用行动方案。

▮按图索技

不容易溢水的"黑科技"水杯来了

本报讯(记者倪思洁)记者近日从 中国科学院理化技术研究所获悉,该所 仿生智能界面科学中心研究员董智超 和工程师于存龙带领团队设计出了一 种不容易溢水的"黑科技"水杯,在液体 稳定控制领域取得新进展。团队从猪笼 草和睡莲中获得启发,通过连续 3D 打 印技术制备出具有独特界面设计的"双 仿生"稳液容器,在复杂动态场景下依 然能保持液体高效稳定。相关研究论文 日前发表于《科学进展》。

研究团队首先对多种野生及人工 栽培的猪笼草进行系统观察,发现猪笼 草捕虫笼的内壁上部蜡质区为超疏水 区,下部消化区为亲水区,在交界处形 成一条特殊的"亲水 - 超疏水"界线。 这个界线就像"钉扎线",能将液面牢牢 "钉"住,对保证猪笼草消化液的稳定至 关重要。风洞实验进一步证实了这一 点: 当液面位于分界线附近时最稳定。


团队在受猪笼草启发的基础上,引 入睡莲叶缘"缺角"结构,进一步抑制液 体振荡,并利用连续 3D 打印制备出 "双仿生"容器。测试显示,与普通容器 相比, 仿生容器的稳液能力明显提升: 普通容器在振荡约 15 次后便出现溢 液,而双仿生容器在5000次振荡后液 体仍无溢出。

在真实环境中,手持双仿生纸杯行 走时液体不再溢出。研究人员还设计了 更具挑战性的测试,团队将30个仿生 杯搭建成四层"香槟塔",固定于一辆汽 车前盖上,该车以每小时10公里的速 度通过 50 个交替布置的减速带。最终 结果显示,使用普通容器液体损失 40%,而仿生杯塔内液体溢出率为0%。

测试结束 后,汽车前盖上 的香槟塔状态。 左侧为普通水 杯,右侧为双仿 生水杯。

中国科学 院理化技术研 究所供图

研究表明,这一仿生设计不仅适用 于日常便携容器,也为工业运输、航空 航天以及医疗液体输送等领域提供了

全新的设计思路。

相关论文信息:https://www.science.org/doi/10.1126/sciadv.adz7099

||专家讲坛

让癌细胞"变老",可以治疗癌症吗?

癌细胞也会变老吗? 近日,来自美国 斯坦福大学和宾夕法尼亚大学的科学家 联合在《自然 - 衰老》上发文称,衰老可 以抑制致癌基因 KRAS 驱动的肺癌发 生,并明确指出癌细胞也会衰老,进而导 致对人体的致病力下降,从而减少人们 罹患癌症的情况。

那么, 衰老到底会导致癌症发病上 升还是下降呢?

为何高龄老人癌症发病率下降

《英国癌症杂志》曾报道,40岁之后, 人群的癌症发病率随年龄增加呈指数级 快速增长。有些人甚至说:"只要活得长

久,早晚都是要得癌症的。 事实上,这种说法是有一定科学根 据的。研究表明,人体的细胞中存在着 抑癌基因,随着年龄增加,抑癌基因也 会衰老,从而削弱对细胞恶变风险的控 制力。同时,随着年龄增加,环境中的有 毒化学物质、辐射和病毒感染等造成的 DNA 损伤也会在细胞中不断积累,加 速细胞基因突变,增加形成癌细胞的风 险。更为重要的是,人体的免疫系统也 会随年龄增长而衰老,导致其对癌细胞

然而, 当进一步放宽老年人癌症研 究的年龄尺度时,流行病学的研究结果 却表明,人类进入老年阶段后,癌症的发 病率开始会不断增加,到70多岁时达到 顶峰,而在85岁后则不再上升,反而出 现下降趋势。由这些数据可以推测,在高 度老龄阶段, 衰老过程本身可能就是抑 制癌症发生和发展的原因。

监控能力下降。

癌细胞变老可减少癌症发生

那么,为什么衰老抑制癌症发生和 发展呢?答案就是癌细胞也变老了。从生 物学的角度来看,衰老给生命体及其细 胞带来的变化是系统性的,癌细胞也不

20世纪中期,人们发现人体的胚胎细 胞如果在体外进行培养,只能传代到51到 59代,就因为过度衰老无法继续增殖了。 这个传代的极限被称为海弗利克极限,是 正常人体组织细胞都要遵守的规律。

一直以来,人们认为癌细胞并不遵 守海弗利克极限。一方面,有研究认为海 弗利克极限存在的原因是细胞在分离 DNA 复制时端粒会不断消耗,导致染色 体 DNA 分子不断缩短,使得细胞因功能 基因受损而无法继续生存和增殖, 而癌 细胞有端粒酶可以修复端粒的长度,因 此没有海弗利克极限。

另一方面,科学家在20世纪60年 代初成功分离培养了人宫颈癌细胞系 HELA 细胞。该细胞至今已传代了 60 多 年却依然保持旺盛的增殖能力, 子代细 胞重量已超过5000万吨,有5个诺贝尔 奖都是靠这个细胞株的相关研究支撑起

事实上,随着研究不断深入,人们发 现端粒酶在普通细胞中也是存在的。癌 细胞的端粒酶和普通细胞相比并没有特 别不同的地方,端粒酶并不是癌细胞不 老的决定性因素。另外,HELA细胞可以 说是癌细胞的"天选之子",增殖力和生 存力极高。几十年来,在体外培养中生存 能力超越 HELA 细胞的人类细胞是非常 罕有的。绝大多数癌细胞会老去、会死 亡,不能长生不老。

2023年《细胞报告》的一篇文章就 报道了人体重要致癌基因之一-Myc,也是人体抗衰老的重要基因。人 们在小鼠出生后一个月就对 Myc 基因 进行干预使其失活。这大大降低实验动 物的癌症发病率,但同时也会导致小鼠 在形态、行为学和机体代谢等方面出现 早衰的症状,加速小鼠的衰老。此时,如 果 Myc 基因的活性得到恢复,则可能 会使肿瘤的发生率回升。这表明,让癌 细胞变老,可以减少癌症的发生,达到 延长寿命的目的。

一条治疗癌症的新路

2024年,在国际预印本 bioRxiv 平 台上有两项关于衰老与癌症的研究备受 瞩目。一项研究是美国斯坦福大学的研 究团队应用基因编辑技术分别"关闭"了 年轻小鼠和老年小鼠的20多个已知抑 癌基因。结果表明,年轻小鼠体内肿瘤的 重量、数量和体积均超过了老年小鼠体 内的肿瘤, 这表明老年小鼠可能存在某 种衰老相关的抗癌机制。

本文开头提到的《自然 - 衰老》的文 章也是该团队进一步研究的成果。他们 进一步解释了老年小鼠抗癌的机制,结 果表明衰老可导致 PTEN 等抑癌基因功 能下降,但细胞内 KRAS 等致癌基因的 功能也会因为衰老而下降, 而后者在衰 老时活性下降对癌症发病率的影响比抑 癌基因活性下降造成的影响更大。

另一项研究来自美国斯隆 - 凯特琳

纪念医院癌症中心。科研人员发现,当细 胞衰老时,可以产生一种被称为 NUPR1 的衰老相关蛋白质。这种蛋白质能够造 成细胞缺铁,从而使其快速生长。在人体 的肺组织中,80 岁以上人群 NUPR1 蛋 白的表达量比55岁以下人群更高,这可 能就是80岁以上高龄老人罹患肺癌风 险更低的重要原因。

对于癌症与衰老的关系, 美国国家 癌症研究所一位研究人员曾发文指出, "衰老对癌症来说是一把'双刃剑'。一方 面,年龄是公认的癌症发生风险因素,基 因突变累积、免疫力下降导致监测和对 抗癌症的效率下降,会使癌症风险上升; 另一方面, 衰老也是有效的抗癌保护机 制,迫使癌前细胞停止分裂。"如果仅仅 是考虑体细胞驱动的突变随着年龄的增 加而不断增多,衰老将会显著增加肿瘤 基因突变,并最终到达发生癌症的门槛。 这也可以解释为什么大多数癌症会在中 年和老年阶段才首次出现。

但是,裸鼹鼠、某些蝙蝠、大象和蓝 鲸等长寿哺乳动物发生癌症的概率比较 低。这表明,很多长寿相关的抑癌机制还 未被揭示。

对癌细胞"变老"及其机制的研究, 也为人们指出了一条治疗癌症的新路, 就是让癌细胞"变老"死去。人们可以采 用"点穴"的方法,利用基因编辑技术让 癌细胞表达 NUPR1 等衰老蛋白基因, 用让癌细胞"老死"的方法治疗癌症。相 对于正面攻击癌细胞的疗法来说,这种 癌症治疗方法对机体的影响更小, 不良 反应更小,更加适合高龄老人。

(作者系北京大学基础医学院教授)

北京市"AI+ 脑机"产业创新工作推进会举办

产业创新工作推进会"举办。推进 会以"脑智融合·慧聚北京"为主 题,由北京市科委、中关村管委会 海淀区人民政府、清华大学和中国 信息通信研究院(以下简称信通 院)共同举办,集中发布了多项脑 机接口产业举措与成果。

日,"北京市'人工智能(AI)+ 脑机'

本报讯(记者田瑞颖)11 月 21

平台建设方面,由清华大学牵 头联合优势单位共同发布"AI+ 脑 机数据"平台,将通过整合跨尺度、 多模态的脑数据资源,打破数据壁 垒,为创新主体提供高质量、标准 化的数据资源和分析工具,加速关 键技术、创新产品研发进程。由信 通院牵头, 联合国内优势高校院 所、医疗机构及创新企业,以标准、 村脑机接口产业协会,将聚焦服务 脑机接口技术协同攻关、成果转化 落地、标准体系建设、专业人才培 养和产业创新生态搭建,推动产业 链上下游协同发展。

平台、生态为牵引,发起筹备中关

技术成果领域,脑科学多模态 通用基础大模型、脑疾病 AI 精准 诊疗系统等 6 项脑机接口创新成 果集中亮相,展示了北京市在脑机 接口领域从单点技术到系统集成 的自主创新能力。

下一步,北京市将进一步整 合科研、临床、产业资源,持续完 善产业生态,推动"AI+ 脑机"技 术持续在医疗康复、教育体育、安 全生产、智慧生活等领域的深度

第三届海洋装备科技创新大会召开

本报讯(记者廖洋 通讯员马庆 雯)近日,第三届海洋装备科技创 新大会在青岛召开。本次大会由 中国海洋工程咨询协会海洋装备 分会等7家单位联合主办、中国 工业互联网研究院山东分院等机 构承办,以"链通蓝海·质领未来" 为主题,围绕海洋装备领域的新 技术、新成果与未来趋势展开深 度对话。

在大会主旨报告环节, 山东省 海洋工程重点实验室副主任王树青、 崂山实验室海洋大科学设施研究发 展部副部长张鑫等 4 位专家分别围 绕海上漂浮式风电工程、深海原位光 谱探测技术、区块链赋能海洋经济及 工业数据集应用等主题,分享了前沿 研究成果与实践经验。

会上发布的《2024海洋装备年 报》聚焦海洋矿产、油气、风能及生 物资源利用四大类装备,通过系统 性数据收集与分析,揭示了我国海 洋装备产业在规模扩张、技术迭代 及国际竞争力提升方面的显著进 展,并明确指出科技创新是驱动产 业升级的核心引擎。

在同期举行的公共服务平台 发布仪式上,"海葵蓝测"平台正式 发布。该平台以数字化、网络化、智 能化为突破口,首创检验检测领域 "服务商品化"运营模式,通过透明 化流程与一站式服务,破解行业效 率低、标准不统一等痛点,标志着 我国检验检测服务正式迈入"透明 高效、一键通达"的新阶段。

此外,"青岛好成果"月度路演 活动同步举办,高端远洋探鱼声呐 等 5 项海洋装备领域成果亮相,青 岛市海洋设备科技成果转化概念 验证平台的相关情况也同步发布, 进一步打通了科研与市场的对接 渠道。

我国首个核能工业供汽碳足迹因子发布

本报讯(见习记者赵婉婷)11 月21日,中核集团在京发布全国

首个核能工业供汽碳足迹因子。该 碳足迹因子可精准计算出从海水 到工业蒸汽全生命周期的碳排放, 相当于给每千克核能蒸汽办了"绿 色身份证"。当天,我国第二个投产 的核能工业供汽项目——中核集 团旗下中国核电投资控股的海南 核电"和气一号"同步向中核产业 合作示范区稳定供汽。

本次发布以江苏核电"和气一 号"投产一周年为核算周期,按照 国内国际产品碳足迹量化标准进 行测算。数据显示,核能供汽碳足 迹是燃煤热电联产蒸汽的 1/600, 是天然气热电联产蒸汽的 1/100;

核能供汽比化工蒸汽低碳优势更 突出,比天然气更绿色。

据了解,全球首个高温气冷堆 与压水堆耦合工业供汽项目"江苏 徐圩核能供热厂"已通过国务院核 准;福清核电蓝色产业园供汽项目 已开工建设;漳州能源等单位也积 极开展调研论证,为下一步开展核 能供汽项目工作做准备。

同时,中核集团还积极推动区域 供暖、工业供汽/供冷、海水淡化、核 能制氢、同位素生产等核能综合利 用。据预测,到2030年,全国将有超 过30%的核电厂实现工业供汽功能, 年替代燃煤将超千万吨,实现核能综 合利用与高耗能行业的耦合发展,进 一步凸显核能的"零碳"价值。