中国科學报

"小昆虫"撬动粮食安全"大杠杆"

■本报记者 李晨

经过紫外消毒的可食用黄粉虫干、出口 国外的饲料用黑水虻干、麻辣川香味蟋蟀小 零食、从"地龙"蚯蚓中提取的功能食品…… 近日,2025 国际昆虫蛋白产业大会暨首届中 国国际黄粉虫产业大会在北京举行。

来自全球五大洲 32 个国家的 400 余位 专家学者、企业代表齐聚一堂,共同探讨如何 将"小昆虫"转化为应对全球蛋白短缺危机的 "战略资源"。

随着全球人口持续增长与传统畜牧业资 源约束的矛盾日益尖锐,农业可持续发展面 临解决蛋白质需求、减少传统养殖业环境足 迹、实现食物系统转型等挑战。与会专家一致 认为,昆虫蛋白不仅是替代蛋白的新选择,更 是推动农业可持续转型、保障国家粮食安全 的绿色杠杆。

从"不够吃"到"吃得好"的选择

2024年, 我国粮食总产量首次迈上 1.4 万亿斤新台阶,谷物基本自给、口粮绝对安 全,进一步夯实了国家粮食安全根基。但中国 农业科学院副院长刘现武在大会上指出,我 国作为世界畜牧第一大国,饲料蛋白资源高 度依赖进口。大豆进口量已突破1亿吨,占粮 食进口总量的六成以上。

"蛋白饲料原料供给结构性短缺的特点 较为突出,加快推广非蛋白氮饲料化利用,积 极探索昆虫蛋白、藻类蛋白等资源饲料化利 用途径,是保障养殖业稳定发展的客观需 要。"刘现武强调。

为何昆虫被视作"破局之钥"? 中国工程 院院士、山西农业大学教授徐明岗从营养与 效率角度提供了科学依据:"许多昆虫的蛋白 质含量干重高达 40%~70%, 与牛肉、鸡肉相 当甚至更高,且含有人体所需的全部必需氨 基酸和丰富的微量营养元素。"他进一步指 出,昆虫生产具有极高的饲料转化率,生产一

挑选后待干燥加工的黄粉虫幼虫。 中国农业科学院蜜蜂研究所供图

公斤昆虫所需的饲料仅为牛的 1/12、猪的 1/4、鸡的 1/2。同时,其温室气体排放远低于 传统畜牧业,对土地和水的需求也极少。

联合国粮食及农业组织的报告明确倡导 将昆虫作为缓解全球粮食与饲料短缺的重要 路径。中国乡村发展协会执行副会长李金祥 强调了昆虫的循环经济价值,"昆虫可以将人 类和其他动物不能利用的废弃物转化为优质 蛋白"。

徐明岗长期从事农业可持续发展研究。 他指出,昆虫生产可以转化利用多种有机废 弃物,是实现有机农业循环经济的关键途径, 很好地解决了废弃物资源高效利用及环境污 染方面的问题。

刘现武强调,昆虫蛋白产业是典型的环 境友好型、资源节约型产业,其核心优势在 于卓越的资源转化能力。我国每年产生秸秆 8.65 亿吨、畜禽粪污 30.5 亿吨、餐厨垃圾 1.2 亿吨,利用黑水虻等资源昆虫处理这些废弃 物,既能实现垃圾资源化和无害化,又能获得

优质蛋白饲料和生物有机肥。据 测算, 若使 50 亿吨有机废弃物 的转化率达到 20%~30%, 可生产 出相当于1亿吨大豆当量的动 物蛋白,资源效益惊人。

从"实验室" 到"餐桌"的漫漫长路

"世间万物,莫不有乾坤;小 小昆虫,亦蕴大文章。"李金祥指 出,昆虫是地球上种类最繁多、 数量最庞大的生物群体之一,自 古便与人类文明息息相关。中国 古代先贤早已洞察昆虫在自然 界和人类生活中的重要地位。

近年来,欧盟委员会批准黄 粉虫幼虫及粉末为新型食品,

《科学》杂志预测其国际市场年均增长率将达 20%~30%。刘现武介绍,全球已有 130 个国 家、超20亿人食用昆虫,已知可食用昆虫达

然而,尽管昆虫蛋白优势显著,其研发 和产业发展仍处于起步阶段。种源研发是 产业发展的首要瓶颈。李金祥指出,要在资 源昆虫品种的精准选育与繁殖技术的革命 性突破上下功夫。他呼吁深化科企协作,推

徐明岗则系统性地指出了全产业链的技 术需求,包括原料处置技术、养殖技术、加工 技术和提取技术, 其核心目标是努力降低成 本,并开发出更多样化的产品。在养殖环节, 尽管我国黑水虻自动化养殖初见成效,但如 何融合人工智能、大数据实现从"规模化"到 "智能化"的跨越,仍是攻关重点。

"在中国,昆虫蛋白公众认知度和接受度 低、技术标准缺失、规模化程度不足仍是主要 瓶颈。"徐明岗说。

产学研共绘"昆虫产业"新蓝图

面对挑战,我国正通过国家战略科技力 量系统布局,推动产业升级。

在政策层面,农业农村部将昆虫蛋白纳 人《饲料原料目录》和《养殖业节粮行动实施 方案》,为虫粉、脱脂虫粉的饲料化应用提供 了规范依据。但昆虫蛋白在食品、医药等高端 领域的应用标准尚未明确。徐明岗强调,需要 政策支持,形成可持续发展的全球共识。他呼 吁更多国家和国际组织出台政策, 支持昆虫 蛋白产业发展。

刘现武说,作为国家战略科技力量,中国农 业科学院已整体构建起产学研用紧密结合的科 技创新体系。全院现有20余个院级创新团队从 事昆虫领域研究。中国农业科学院蜜蜂研究所 与西南大学联合组建了"资源昆虫高效养殖与 利用全国重点实验室",开展了黄粉虫、黑水虻、 胡蜂、金蝉、蟋蟀等昆虫资源挖掘、活性成分鉴 定和高值化利用的相关研究工作。

徐明岗指出,目前,昆虫蛋白的技术与产 品开发呈现多元化趋势。在主流市场的饲料 化应用方面,以黑水虻、黄粉虫为代表的昆虫 将有机废弃物转化为优质蛋白饲料; 在新兴 市场的食品化探索方面, 欧盟已批准黄粉虫 粉末用于面包、奶酪的制作等;在未来市场的 高值化开发方面,研究人员从昆虫中提取甲 壳素、抗菌肽等成分,相关研究向医药、化妆 品等高附加值领域拓展。

刘现武表示,中国农业科学院将加强顶 层设计,促进创新链、产业链、资金链、人才链 深度融合,加快培育资源昆虫领域新质生产 力。这一布局旨在通过跨学科、全产业链合 作,构建梯次分明的科技创新体系。

徐明岗呼吁各界齐心协力, 共同促进昆 虫蛋白产业的健康发展,唯有通过科技赋能、 国际合作与产业协同,才能让昆虫蛋白成为 可持续的绿色杠杆。

■ 发现・进展

大连理工大学

开发新型 3D 打印生物墨水

本报讯(记者孙丹宁)大连理工大学教授王华楠团队开 发出一类由两性软甲基丙烯酸明胶(GelMA)纳米颗粒自 组装而成的新型胶体凝胶生物墨水。与传统的 GelMA 聚 合物墨水相比,该墨水显示出优良的打印性能并扩展了对 多种 3D 打印模式的适应性, 为 3D 打印技术从实验室到 临床应用的转化奠定了基础。相关研究成果近日发表于 《生物活性材料》。

GelMA 水凝胶因对多种交联方案的适应性、理想的 生物相容性和生物降解性以及易于化学功能化,成为一种 广泛用于生物制造的天然聚合物。然而,在 3D 生物打印 方面,由于溶胶 - 凝胶转变缓慢、机械强度不理想以及打 印温度控制严格等原因, GelMA 的打印稳定性和准确性 不尽如人意

为此,研究团队开发了双交联 GelMA 胶体墨水,可用于 组织模拟物的高效 3D 打印。由于存在可逆键和紫外引发的 共价键, GelMA 胶体油墨表现出优异的印刷适性、形状保真 度、广泛可调的机械性能、印刷温度稳健性,优于使用最广泛 的 GelMA 聚合物凝胶油墨。此外,与传统的聚合物凝胶网络 相比, 纳米结构胶体网络具备简单的药物负载和缓释能力,

研究人员介绍, GelMA 胶体墨水在多种 3D 打印模式下 解锁了自由形状,包括多墨水打印、嵌入式打印、原位打印, 即便在生理湿润或出血的创伤部位,也可直接精准构建复杂 的组织模拟物。

相关论文信息:

https://doi.org/10.1016/j.bioactmat.2025.07.010

上海交通大学医学院附属仁济医院等

研制全新 AI 预后预测系统

本报讯(见习记者江庆龄)上海交通大学医学院附属仁 济医院教授卜军团队与上海交通大学教授盛斌团队,研制出 人工智能(AI)预后预测系统 DeepSTEMI,通过融合解析多 源影像特征,实现了自动化、智能化的风险分层,可精准预测 急性心肌梗死患者发生心血管事件的风险,为急性心梗患者 的精准管理提供了新的技术工具。相关研究成果近日发表于 《科学通报(英文版)》。

急性心肌梗死是导致全球心血管病患者死亡与致残的 重要病因。心脏磁共振是评估心肌梗死的"金标准"影像工 具,但它依赖人工阅片和手工量化,流程繁杂、主观性强且难 以实现标准化,限制了在临床实践中预后评估的真正落地和

DeepSTEMI 是首个面向急性心肌梗死患者预后风险的 全流程自动化多模态深度学习系统。研究团队整合多中心真 实世界数据,累计分析超过3万张磁共振图像,为 Deep-STEMI 模型的泛化能力提供了坚实的真实世界证据,也为 急性心肌梗死患者提供了更精准的远期心血管事件风险预 测和智能化风险分层。

在多中心外部验证中,DeepSTEMI的预测能力显著优 于现行临床评分方法和传统影像指标,能够清晰区分高危与 低危患者。在风险分层中,该系统能够更早、更精准地识别未 来可能出现不良事件的患者,其风险提示能力远超传统模 型,有助于实现急性心梗高危患者的早发现、早干预。同时, DeepSTEMI 在不同医院、不同类型磁共振扫描设备上表现 稳定,显示出良好的跨中心、跨设备泛化能力。

为增强模型的透明度和临床可解释性,研究团队采用 多种方法解析系统的"决策依据"。结果显示, DeepSTEMI 的预测重点与心肌梗死的病理特征高度一致,能够识别出 心肌损伤范围、功能受损区域等关键部位,并通过可视化 展示相关信息,帮助医生理解模型判断。值得一提的是, 为方便临床医生直接查看,研究团队开发了配套的可视化 软件界面。

相关论文信息:

https://doi.org/10.1016/j.scib.2025.11.027

中国科协举办新疆、西藏科普专家报告团活动

本报讯(记者张思玮)近日,中国科协 科普部牵头启动了新疆、西藏科普专家报 告团系列活动。据悉,此次活动以"润疆兴 藏"为整体目标,聚焦当地实际的科普需 求,瞄准未来科技和产业发展制高点,促进 两地科普事业高质量发展。

报告团由中国工程院院士樊代明,中 国科学院院士雒建斌、朱彤领衔,并邀请前 沿科技、疾病防治、心理健康等领域的数十

位专家共同参与,赴新疆乌鲁木齐、昌吉、 克拉玛依、博尔塔拉,西藏拉萨、林芝等地 开展 15 场线下科普报告。同时,此次活动 依托中国科协科普中国平台,建设线上"新 疆西藏科普服务"专区,紧扣两地地域特 征、民族文化特色及生产生活实际,策划推 出 16 个专属科普资源套餐包,涵盖生态保 护、农业技术、前沿科技、健康养生等核心 领域,聚合优质科普内容。

2025 全球计算十大创新成就发布

本报讯(记者王昊昊)在近日于湖南长 沙举行的 2025 世界计算大会上,2025 全 球计算十大创新成就、2026全球计算十大 发展趋势正式发布。

2025 全球计算十大创新成就分别为:全 球计算迈入 ZFLOPS 时代;全球计算能力指 数级增长,推动生成式 AI 应用爆发;区域性 计算集群加速协同,全球算力互联网从概念 迈向落地;神经形态处理器首次商业部署, 开启全球类脑计算新纪元;大模型终端化部 署,拓展端侧计算万亿级市场新空间;"九章 三号"实现 255 光子操纵,拓展人类计算能 力上限;千亿参数开源大模型驱动显著,加 速计算普惠时代到来; 多元协同联盟涌现, 全球计算从技术驱动转向标准驱动;基础设 施加速"液冷 + 绿电",全球计算低碳底色更 趋鲜明;中美德引领,全球计算技术创新产 业创新迎来全新活跃期。

2026 全球计算十大发展趋势分别为: 全球计算供应链格局加速多极化重构;计 算企业竞争升维全栈生态比拼; 破局性能 挑战,芯粒异构集成技术将进入普及期;计 算架构深度演进助力突破"内存墙""带宽 墙"桎梏;后摩尔时代多元计算范式加速从 技术构想迈向产业实践;端侧、边缘侧算力 迈入规模化场景应用爆发期;模型即服务 (MaaS)将成算力普惠基本路径;算力优化 工具层"效能倍增器"赋能作用凸显;全球 计算"成本双轨化"特征持续鲜明;算力与 能源步入系统性深度协同新阶段。

世界计算大会由工业和信息化部、湖南 省人民政府联合打造,此前已成功举办6届。

近日,由中国科学技术馆与南非 Sci-Bono 科学中心共同建设的"倾听 科学空间"正式向公众开放。"倾听科学空间"坐落于南非 Sci-Bono 科学中 心内,占地约200平方米,集科学展示、互动体验与文化交流于一体,设置 "思维训练""非遗科韵""VR体验""神机百变"4个特色展区。中国科学技术 馆作为项目的主要资源提供方,将丰富的展教资源与科普经验融入空间建 设。南非 Sci-Bono 科学中心则力争使空间内容与当地观众产生共鸣。 图为公众在"倾听科学空间"体验展品。

本报记者高雅丽报道 中国科学技术馆供图

第二次青藏科考交出"应用答卷"

(上接第1版)

据介绍,科考累计发表新物种超 3000 个, 包括植物 388 种、动物 205 种、微生物 2593 种。 更令人振奋的是,一批曾被认为灭绝或濒危的 物种被重新发现。同时,团队构建了全球最大 的青藏高原冰川病毒与细菌基因集,发现8894 种冰川病毒(98%为特有)和 2593 个潜在新细 菌物种(83%为未知)。这不仅填补了第一次青 藏科考在微生物领域的空白,构建的生物多样 性数据库还涵盖图片、地理信息、遗传资源、物 种特征格局及用途等全维度信息,为实现人工 智能(AI)融入青藏高原植物多样性研究奠定 了重要基础。

在战略资源勘探领域,科考突破直接缓解了 我国资源对外依存压力,确立喜马拉雅高分花岗 岩有关的稀有金属矿带,预测了北羌塘盆地中心 有更好优质烃源岩及更大生烃潜力,支撑青藏高 原战略资源能源储备基地建设,提出固体矿产成 矿远景区 40个,圈定找矿靶区 33个,钾盐成矿 远景区 96 处, 卤水锂远景区 110 处。

参与科考多年,中国科学院地质与地球物理 研究所研究员秦克章的感受尤为深刻:"过去,我 国一些大宗矿产、战略性关键矿产及稀有矿产对 外依存度很高,少则 60%至 70%,多则 90%多。面 对紧缺的矿产资源,我们是'等米下锅',心里没 底。现在,通过这次科考,我们不仅深化了成矿理 论认识,更在空白区获得了一系列新发现,摸清 了更多的资源家底。无论是近期可以开发的,还 是作为战略储备的,我们都'手中有粮,心中不

"我现在的心情很激动。"在会议现场接受采 访时,方小敏直言,"科考队有几千人,以前大家 各做一块,交流也零散,现在通过综合集成,突然 发现'原来我们做了这么多有用的事'。这种系统 性呈现给了我们巨大的信心,也让社会更理解科 考的价值。

提出新论断,环境在转型

"从综合集成成果视角判断,青藏高原正处 于'第三次环境转型期'。"会上,姚檀栋提出这一 新论断

他表示,第二次青藏科考发现,青藏高原经 历了3次环境转型。第一次转型是在4100万年 前到 2600 万年前, 山海翻转和高原隆升驱动季 风北进和暖湿海洋水汽输送,驱动了生物多样性 演化与喜马拉雅锂铍稀有金属成矿带形成;第二 次转型是约 1200 万~800 万年前至今,高原北部 隆升与现代青藏高原形成,奠定寒旱化和"三极 联动"格局,发育了全球最大的"亚洲水塔"和全 球最丰富的生物多样性热点地区之一;第三次转 型则是当前及未来,最大特点是全球变化与人类 活动造成的暖湿化和暗绿化。

"此轮转型是一个多圈层相互作用、区域放 大效应与全球联动空前加强的过程。"姚檀栋举 例说,"青藏高原将成为暖湿化'放大器',升温速 率为每10年0.37摄氏度,是全球平均的两倍, 降水也呈增加趋势。

这使得机遇与风险并存。一方面,"亚洲水 塔"供水能力增强,碳汇能力增强,生物多样性 服务人类潜力增强,为宜居发展提供了前所未 有的机遇;另一方面,"亚洲水塔"失衡、冰崩及 冰湖溃决等巨型灾害风险显著增加,生态系统 发生深刻变化,高海拔特有生物多样性丧失的 风险加剧

为破解资源、生态与官居环境的深层关联, 科考队创新性地提出"三极联动"科学假说。"我 们将北极、南极、青藏高原视为地球系统的3个 关键极,通过大气环流与海洋环流将其串联。"方 小敏解释说,"而正是这两大环流,决定了全球水 与热的分配格局,而水热分配及其变化率控制了 生物多样性的演化、人类宜居环境以及关键资源 的形成。

值得关注的是,正在推进的国家重大工程 也展现出与环境保护的协同效应。姚檀栋指 出:"青藏高原国家公园建设、拉萨南北山绿化 工程、川藏铁路建设、雅江水电开发等国家重 大战略行动,不仅本身具有显著的生态正效 益,也成为应对第三次环境转型、推动高质量 发展的重要抓手。

"下一步,要在充分认识新风险基础上,抓住 新机遇,融入'稳定、发展、生态、强边'发展战略, 组织好新阶段重大科考任务。"姚檀栋说。

定位"升级",迈入新阶段

接下来,青藏科考将何去何从?

姚檀栋表示:"第一次青藏科考定位是'摸清 家底',第二次青藏科考定位是'查明变化',而新 阶段的核心定位是'作贡献',聚焦高水平高质量 安全发展。

姚檀栋强调,青藏高原研究具有典型的 "四极"特征:生物适应机制极微观、极高海拔 环境极端条件、复杂地球系统极综合交叉、"三 极联动"极宏观。为此,面向未来,科考需实现 "四个转变": 从地球系统向要素微观机理深 入,从人工考察向无人智能科考迈进,从学科 交叉向深度融合发力,从青藏高原向南北极联 动拓展。

新的科考目标将直指现实需求——青藏 高原第三次环境转型下的绿色宜居发展科学 行动。未来,将围绕"亚洲水塔"、"双碳"目标、 生态屏障等八大应用方向,部署四大核心板块 任务。一是深化水 - 碳 - 健康研究;二是破解 生态-宜居发展难题;三是保障矿产与生物 战略资源安全;四是支撑重大工程与科考大装 置建设。

"下一步,深化使命导向的地球系统科学 研究是基础。"姚檀栋进一步说。同时,要构建 战略支撑科技体系,打造冰冻圈灾害监测预警 平台、地球系统观测 - 数据 - 模拟平台、数字 化青藏平台及第三极地球信息国家战略样本 库,守护全球气候变化的历史密码,并打造以 我为主的国际合作新格局,推进青藏高原世界 科学中心建设。

在生物多样性领域,孙航描绘了未来研究的

四大方向:"一是夯实基础数据,推动 AI+ 生物 多样性大数据与新一代《青藏高原生物志》融合; 二是攻关前沿科学问题,揭示生物类群与地质演 变、生态环境的协同演化机制;三是服务国家需 求,有效保护生物多样性与生态屏障;四是支撑 社会经济发展,推动生物资源可持续利用与绿色 发展。

"过去我们发论文、追前沿,现在要反过来, 用科学'道道'解决实际问题。"方小敏对《中国科 学报》说。以钾盐资源为例,他介绍说:"我国 50% 以上的钾依赖进口,现有储量仅够维持20多年。 没有钾,粮食产量可能腰斩,这是最紧迫的国家 安全问题。

为此,他牵头组建"盐湖资源产学研创新联 合体",整合全国高校、企业、科研机构与政府力 量,打通从理论找矿、高效提取、环境治理到盐碱 地开发、生态旅游的全链条。"盐湖本身就是极端 干旱气候的产物,我们过去用它研究'三极联动' 机制,现在要用这些认知去指导找矿。目标变了, 但科学是一脉相承的。

回顾青藏科考的历史,方小敏感慨道:"第 -次青藏科考是在一穷二白中'认识高原有什 么';第二次青藏科考用先进设备'揭示过程与 机制'

对于未来,他充满信心:"第二次青藏科考后 半段乃至未来,核心目标之一是将至少一半的精 力,转到为青藏高原的铁路、水利、灾害防治、新 工业、新农业等国民经济建设服务上来。最终目 标是让人民生活更幸福、环境更宜居。