中国科学报

吃点便便就过冬 不睡觉懒囤粮

科学家揭秘高原鼠兔的奇葩生存之道

■本报记者 李晨阳

严寒对小动物来说总是更难熬一些。 生活在北美落基山脉的美国鼠兔会在地 下贮藏大量干草,以度过漫漫长冬;而旱 獭则喜欢美美地睡上一觉,再睁眼已经是

然而我国青藏高原上定居的小小鼠 兔,却既不冬眠,也不囤粮,甚至专往竞争 对手多的地方扎堆。即便这样,它们冬季的 存活率高达 94%~96%。这是为什么呢?

近日,由中科院动物研究所、中科院西 北高原生物研究所和中科院遗传与发育生 物学研究所研究人员组成的团队, 在美国 《国家科学院院刊》上报道了一项为期 13 年的研究工作:高原鼠兔的过冬之道,你还

"燃烧我的卡路里"?不需要!

高原鼠兔是一种只有巴掌大的小型哺 乳动物, 顾名思义, 长得又像老鼠又像兔 子,分类学上属于兔子。

十几年前,研究人员来到青藏高原,想 看看这种"萌萌哒"的小动物究竟怎么适应 高原上极为严酷的冬天。没想到,一个发现 令他们惊讶不已——高原鼠兔在冬季的能 量消耗竟然比夏季还低30%。

"这很不寻常。"论文共同第一作者、中 科院动物研究所迟庆生博士对《中国科学 报》说,"我们过去观察过太多的非冬眠哺 乳动物,它们在低温下或冬天的能量消耗 大多是显著增加的。

道理很简单,当外界温度降低时,哺乳 动物往往需要燃烧更多能量,以维持自身 恒定的体温。然而在青藏高原的严冬里,鼠 兔们不管是静止能量消耗,还是每天的能 量消耗总量,都反而比夏季大大减少了。

为什么会这样呢? 研究人员首先猜想 它们是不是像其他一些小型哺乳动物那 样,通过降低体重来减少能量消耗,结果

高原鼠兔。 迟庆生供图

发现它们在冬天也很好地保持了胖嘟嘟 的体形;难道它们像变温动物那样依靠体 温的大幅下降来维持生存?研究显示,鼠 兔的体温在冬天的确下降了,但也只是个 别个体的体温从39摄氏度下降到36摄氏 度左右,基本维持了体温恒定,也就是说鼠 兔冬季不冬眠,也不休眠。

那它们是不是在地下私藏了"小粮 库",靠吃小灶过冬呢?很遗憾,科学家找了 十几年,也没在地下挖到过它们的粮仓。

"十多年前我们开启这个中英合作项 目时,以为只是个简单的科学问题。没想 到,实际情况远比我们预想的要复杂。"论 文共同第一作者兼共同通讯作者、中科院 遗传与发育生物学研究所研究员 John

"竞争对手"是什么?不重要!

另一个意外发现,则有点"重口味"。 长期以来,鼠兔被视为牦牛等家畜的 竞争对手,因为它们不仅争夺大量牧草,

还有打洞筑窝的习性,数量过多时会破坏

但鼠兔自己似乎一点都没有身为"竞 争者"的觉悟。在冬天牧草又少又难吃的时 候,它们会转而在牦牛多的地方扎堆。

"我们发现,它们竟然通过吃牦牛的粪 便来补充额外的能量。为了证实这一点,我 们专门拍摄了视频,还检测了鼠兔的胃内 容物,发现的确含有牦牛的 DNA。而且鼠 兔在食用牦牛粪便后,连肠道菌群也变得 和牦牛更相似了。"共同通讯作者、中科院 动物研究所研究员王德华说。

"牦牛粪便作为鼠兔的食物资源,更容 易获得也更容易消化,能降低鼠兔取食的 代价。"共同通讯作者、中科院西北高原生 物研究所研究员张堰铭说,"高原鼠兔聪 明地利用牦牛粪便作为食物,来应对常规 食物的短缺,成功地将冬季存活率提高到 了 94%~96%。

在过去几十年间,过度放牧引起了青 藏高原草场的退化,然而高原鼠兔等小型 哺乳动物却经常发生种群爆发的情况。这 显示出它们有着独特的生存智慧。

"这项研究的一系列发现,不仅告诉 我们高原鼠兔在寒冷季节可通过降低体 温、代谢水平和减少活动来大幅度减少 能量消耗,更有趣的是,高原鼠兔会扎堆 在竞争对手牦牛较多的地方,通过吃它 们的粪便来作为额外的能量来源。"王德 华总结道,"这些发现,丰富了我们对小 型哺乳动物能量代谢的认知, 也改变了 我们对物种竞争的狭隘认识。

野外生存和野外科研:大家都不容易!

这项工作为什么做了13年之久呢? "因为在野外研究动物可比在实验室难多 了。"迟庆生说。

在研究中,他们需要在冬天抓获鼠 兔,然后给它们做一个小手术,在腹腔埋 置温度时间记录器。然后对这些小动物进 行术后护理,等它们恢复后再放归自然。 冬天过后,他们还需要把这些带着记录器 的鼠兔再捉回来。

"这可不容易。有些鼠兔被捕食者吃掉 了,有些鼠兔由于各种原因死在了野外。如 果无法重捕的鼠兔太多, 我们这一年的实 验就白做了,只能等待来年。"王德华说。

在高原上的多年相伴,也让研究人员 对这种小动物有了更深的理解。张堰铭说: "尽管鼠兔在很长时间里被冠以'害鼠'之 名,但它们显然对青藏高原生态系统有着 重要的作用,例如它们是很多鼬、狐狸或鹰 隼等食肉动物的猎物,是食物链上的重要 一环。此外,令人们深恶痛绝的打洞行为, 却为雀形目鸟类、蜥蜴等很多动物提供了 庇护所。我们这次的研究揭示了这种小动 物独特的'生存智慧',希望能让更多人了 解它们,客观地看待它们。

相关论文信息:

https://doi.org/10.1073/pnas.2100707118

本报记者朱汉斌报道

张跃环供图

▋发现・进展

中科院成都生物研究所等

青藏高原草地变化 从"看天"转向"由人"

青藏高原草地主控因子转变影像记录。

本报讯(记者张晴丹)近日,《生态指示物》在线发表了中科 院成都生物研究所生物多样性与生态系统服务领域地表过程与 生态系统管理项目组熊勤犁、吉首大学副教授肖洋、中山大学教 授梁平汉等人的研究成果。他们发现,青藏高原草地变化的主控 因子正在由气候变化主导变为人类扰动主导,特别是大型生态 治理和生态恢复工程主导。

青藏高原所拥有的草地生态系统是高原及周边地区重要的生 态屏障。目前,人类扰动和气候变化对大时空环境下青藏高原生态 系统变化的驱动研究已成为热点。但究竟是气候变化还是人为扰动 主导青藏高原草地的实质性变化这一问题尚未准确回答。

研究团队以青藏高原草地为研究对象, 系统地揭示了 1980~2015年青藏高原草地净初级生产力(NPP)的空间分布和时 序变化,使用趋势分析和冗余分析确定驱动指标(气候变化和人类 扰动)对 NPP 变化的贡献。国家实施的一系列生态保护工程与政策 对青藏高原草原生态系统的影响也尚未得到系统评估。

近35年来,青藏高原草地生产力呈现明显改善趋势,其中 大部分分布在高原中部地区, 而高原的西北部地区则出现了退 化趋势。气温和降水变化不同步直接导致温度和水供给量不能 成为该地区 NPP 变化趋势的良好指标。此外,人为干预影响更 大。根据冗余分析,大型生态恢复工程的积极贡献是整个研究区 域草地生产力变化最重要的指示指标,其次是温度(有利于植被 生长和加速冰川融化)。生态恢复工程均呈现出"草地生产力增 加的趋势",可作为植被生产力变化的标志物。

该研究为青藏高原第二次科学考察提供了全球变化背景下 的植被生物量调查参考图, 为青藏高原地区的生态安全战略和 植被生产力管理提供了参考。

相关论文信息: https://doi.org/10.1016/j.ecolind.2021.108010

▋筒讯

21 世纪化学中的纳米科技 前沿论坛在广州举行

本报讯 近日,中科院学部"科学与技术 前沿论坛"——21 世纪化学中的纳米科技前 沿论坛暨第 11 届化学的创新与发展论坛在

该论坛由中科院学部主办,中科院化学 部、中科院学术与出版工作委员会承办,旨在 总结基础科学难点与产业化瓶颈问题,展望产 业化路径和范式,促进科学技术前沿突破。

20 多位来自全国各地的院士,以及众多 国内高校顶尖专家、高水平研发机构和纳米领 域龙头企业代表齐聚广州, 围绕纳米生物医 药、纳米智能器件、纳米先进材料以及纳米合 成技术等重点领域作报告,并针对相应领域的 发展前景及存在问题进行了研讨。(朱汉斌)

青岛启动

工业互联网创新赋能中心

本报讯 近日,2021 青岛工业互联网创新 赋能中心正式启动。该中心由青岛市工信局 和青岛市市北区人民政府共同主办,是集工 业互联网技术展示、专业人才培训和 B 端客 户服务为一体的产业综合项目。

据介绍,该项目引入世界领先的工业互 联网编程、数字孪生、产品全生命周期管理 等信息技术,全方位展示工业互联网产业对 整个制造业的颠覆性变革。入驻区域全面经 济伙伴关系协定青岛经贸合作先行试验基地 产业升级中心园区的中小企业,可以低成本 使用该项目平台工具软件, 加快操作工艺数 字化进程,实现效益倍增发展。

青岛工业互联网创新赋能中心提供工业 互联网"双证培训"课程,每年将培训至少 500 名工业互联网专业人才,有效解决企业 专业化人才欠缺的难题。 (廖洋)

上海食品风味与品质控制 工程技术研究中心成立

本报讯近日,上海食品风味与品质控制 工程技术研究中心在上海应用技术大学成 立。中心旨在围绕食品风味分析鉴定技术、 食品风味形成机理与调控技术、食品风味品 质的评价稳定与标准化技术等研究方向开 展工程化系统集成创新,推动绿色天然手段 提升食品风味品质,为我国食品产业的转型 升级和高质量发展提供科技动能。

该中心成立后,将充分整合学校、企业、 行业和相关科研院所的优质资源,建成高层 次人才培养、高水平科学研究、高效率成果 转化的产业化示范平台。 (吕客 黄辛)

偏头痛"松箍咒"获破译

科学家解析抗偏头痛药物选择性作用机制

■本报见习记者 田瑞颖

当前,全球范围内饱受偏头痛"紧箍 咒"折磨的人超过10亿。

2019年,美国食品药品监督管理局 批准了一种新的"松箍咒"——拉米替坦。 这是一种高选择性靶向 5-HT II 的新型急 性偏头痛治疗药物,能有效避免曲普坦类药 物在心血管方面的副作用,然而其选择性靶 向 5-HT_{IF} 受体的机理尚不明确。

近日,中科院上海药物研究所研究员 徐华强团队利用冷冻电镜技术,首次解析 了 5-HT :: 受体结合 G 蛋白以及抗偏头 痛药物拉米替坦的复合物结构,揭示了拉 米替坦选择性结合 5-HT_{IF} 受体的结构 基础。相关研究成果发表于《细胞研究》。

难缠的偏头痛

偏头痛是一种影响极为广泛的神经 系统疾病, 还会伴随抑郁症、焦虑症、癫 痫、肥胖和其它慢性疼痛等,给患者及其 家庭带来沉重负担。据统计,欧洲每年因 偏头痛造成超过270亿欧元的经济损失, 在中国约每11个成年人中就有1人遭受 偏头痛的困扰。

5—羟色胺 (5-HT) 家族受体是偏头 痛、抑郁症、精神分裂症等中枢神经疾病的 重要靶点。其中,5-HT_{IB},5-HT_{ID}和 5-HT_{IF}三种亚型与偏头痛治疗密切相关。

徐华强在接受《中国科学报》采访时 表示,5-HT 在人体大脑中参与记忆、情 绪、食欲、睡眠等多种基本生理功能的调 节。"5-HT 分子作为一种化学信号,帮助 神经元之间传递信息,而 5-HT 受体就 像信号接收器,当接收到信号以后,它自 身会发生结构改变,就像打开了一个开 关,开启细胞的一系列功能。

多年来,靶向 5-HT_{IB}/5-HT_{ID}的激 动剂曲普坦类药物被广泛用于偏头痛的 治疗。然而,该类药物的血管收缩特性给 患有冠心病、脑血管疾病或有高血压病史 的患者带来了一定的治疗风险。

随着拉米替坦的批准,5-HT_{IF}成为 极具前景的抗偏头痛靶点,对其结构、功 能以及选择性药物作用机制的研究具有 重要意义。

"解构"新靶点

5-HT_{1F}属于 5-HT₁亚家族成员,但 在同源性和配体激活效应上与该亚家族 的其它亚型差别相对较大,这也使得 5-HT_{IF}成为具有潜力的选择性抗偏头痛

"为了获得高质量的复合物结构,必 须通过一系列复杂提纯过程获得足够量 的、高纯度、稳定性好的样品。但与此前解 析结构的复合物蛋白不同,5-HT1.受 体一G 蛋白复合物更难获得达到要求的 样品。"徐华强告诉《中国科学报》。

不仅如此,5-HT_{IF} 受体—G 蛋白复 合物表达量低和复合物组装不稳定的特 点也为冷冻样品的制备和结构解析带来 了很多困难。

通过对纯化、冷冻制样和数据处理等 条件的摸索,徐华强团队最终突破了上述 技术瓶颈,获得了高质量的复合物结构。 研究表明,5-HT_{IF} 受体的胞外区附近结 构相对其他 5-HT 亚型受体具有显著的 构象变化,这也是药物拉米替坦能够高选 择性结合 5-HT_{IF} 受体的结构基础。

"目前 5-HT 受体家族还有多个亚型 的结构尚未解析,这些受体发挥着各自不同 的生理功能,接下来,我们将继续对这些受 体进行研究,并系统性地探究不同 5-HT 受体之间的特点和关联, 为靶向 5-HT 受 体的药物研发提供基础。"徐华强说。

相关论文信息:https://doi.org/10. 1038/s41422-021-00527-4

中科院大气物理研究所

填补亚热带森林臭氧 通量观测资料空白

本报讯(记者卜叶)近日,中科院大气物理研究所副研究员宋 涛团队系统分析了中科院鼎湖山森林生态系统通量塔观测数据,研 究发现亚热带森林冠层内外臭氧通量和干沉降速率差异明显,差异 在 9:00~15:00 达到最大。相关研究成果发表于《整体环境科学》。研 究团队借助观测数据发现,无论是冠层内还是冠层外,白天臭氧 通量均表现为向下沉降,而夜间的沉降速率接近零。冠层内外臭 氧通量和干沉降速率差异明显,差异在9:00~15:00达到最大,此 时冠层内臭氧通量和干沉降速率分别为冠层外的35%和42%。 臭氧干沉降速率随着空气温度、相对湿度、光合有效辐射和摩擦 速度的增加而增加,当这些气象因素超过其最佳阈值时,臭氧干 沉降速率的增加趋于平缓。

研究人员表示, 宝贵的第一手观测资料为臭氧干沉降参数 化方案的优化提供了科学依据,将在提升臭氧浓度和干沉降速 率模拟能力方面发挥不可替代的作用。该研究填补了亚热带森 林臭氧通量观测资料的空白,有望推进对大气和森林之间污染 物交换过程的理解。

相关论文信息: https://doi.org/10.1016/j.scitotenv.2021.148338

中国农科院植物保护研究所

揭示植物 RNA 聚合酶 参与类病毒侵染防御机制

本报讯(记者李晨)近日,《分子植物病理学》在线发表了中 国农科院植物保护研究所经济作物病毒病害课题组最新成果。 他们研究发现,植物 RNA 依赖的 RNA 聚合酶 1(RDR1)参与寄 主防御类病毒的侵染,并参与水杨酸介导的植物对类病毒侵染的防 御响应,丰富了对植物类病毒与宿主相互作用的认识。

据介绍,类病毒迄今为止只在高等植物中发现,对蔬菜和果 树等重要经济作物的生产构成了很大威胁。其中,马铃薯纺丝块 茎类病毒(PSTVd)可在自然状态下侵染马铃薯、番茄等数十种 经济作物,造成严重的经济损失。RDR1已被证实在抗植物病毒 防御过程中起着重要作用,但其在植物防御类病毒侵染过程中 的作用尚不清楚。

该研究利用 PSTVd 和番茄/烟草组合探究了 RNA 聚合酶 1 在植物抗类病毒侵染中的作用机制。

研究发现,过表达 RNA 聚合酶 1 基因的本氏烟,可在侵染 初期对 PSTVd 基因组起抑制作用,但是在侵染后期抑制作用不

相反,番茄RNA聚合酶1(SIRDR1a)基因沉默的植株增加 了对 PSTVd 侵染的敏感性,提升了 PSTVd 的积累量。水杨酸预 处理番茄可诱导植株 SIRDR 1a 的表达,增强对 PSTVd 侵染的防 御能力,研究也进一步证明 RNA 聚合酶 1 参与了水杨酸介导番 茄抵御 PSTVd 的防御响应。

相关论文信息: https://doi.org/10.1111/mpp.13104