中国科学报

吴一戎:扎根一线 脚踏实地

■本报见习记者 高雅丽

"我是 1999 年入党的。"作为一名有着近 20年党龄的党员,中科院电子学研究所所长 吴一戎说:"我们这代人都是'生在新中国,长 在红旗下'。2012年,我当选为十八大代表,这 次又能成为十九大代表, 我感到责任非常重

"我是一名来自基层的普通党员"

低调、务实,是外界对吴一戎的一致印 象。在接受《中国科学报》记者采访时,他总是 说:"我是一名来自基层的普通党员。

吴一戎长期工作在科研一线, 主要从事 微波成像技术和大型遥感地面处理系统的研 发工作,发明了稀疏微波成像算法等一系列 微波成像新体制、新方法;主持了我国遥感卫 星地面系统的研制,突破了遥感卫星地面系 统中数据管理、传输、处理等方面的多项关键 技术,填补了我国在该领域的空白;近十年又 大力推进国家航空遥感系统的建设,系统推 进了超越国际现有水平的航空对地观测系统

对于当选为十九大代表, 吴一戎说:"我 是来自科研一线的基层代表,参加十九大一

■简讯

定要带去科技界的意见和建议。'

党的十八大以来,在一系列政策支持下, 创新成为国家发展全局的核心, 吴一戎也亲 身体会到了科技改革的深刻变化:"我曾列席 十八届三中全会。十八大以来,国家制定了很 多关于科技的改革措施,成效十分显著。例如 《中华人民共和国促进科技成果转化法》的出

作为科技界的十九大代表,吴一戎表示,

"要鼓励开展原创性科学研究"

吴一戎坦承,5年来我国的科技发展"超 出了自己预期"。他深刻地感受到国家对科技 的投入、支持力度非常大。

"现在科研项目申请更加公平公开,科研人 员能专心、专注于自己的研究,科研环境不断在 优化。例如,我国空间科学和大科学装置等领域 发展迅速, 也产生了世界一流的原创性科研成 果。"吴一戎说,"希望国家能进一步营造鼓励科

制。"科学评价是原创性发展最主要、最关键 的问题,国家要逐步完善专家评议制度,建立 '小同行'评价机制。'小同行'能更加准确地 了解项目研究的意义和价值,也能在一定程 度上减轻科技界的浮躁现象。

与此同时,吴一戎说:"现在的创新创业环 境需要更加完善的知识产权保护制度。如果没 有形成这样的环境,会挫伤很多高技术公司的 积极性。我希望能进一步建立专业的知识产权 保护法律体系,完善国家的创新环境。

"研究所是支撑科研发展的细胞"

2016年是电子所成立60周年。在中科院 "率先行动"计划的指导下,电子所以"一三 五"规划为牵引,在各研究领域取得新进展。

吴一戎说:"研究所是支撑科研发展的 '细胞'。只有每个细胞都强大了,整个国家的 科研能力才能强大起来。在国家重大需求的 牵引之下,电子所在核心的、重大的关键技术 上,不断产生突破,先后建立了中关村、怀柔、 苏州园区。电子所的创新发展作为一个缩影, 充分展现出了国家发展进步的大好形势。

60年来,电子所承担了我国系列化星载

行60余套产品,做到全波段覆盖,正努力实现 全面替代进口的目标;在地理空间信息领域, 成为我国地面卫星数据处理系统的主要研制 单位,研制的"地理空间信息承载平台"被确 立为国家重要领域信息化建设的"基础平 台";在航空遥感系统领域,改装的新舟60大 型遥感飞机实现首飞,推进了7型国际先进 水平的航空对地观测载荷的研制。此外,电子 所还在微波成像技术、微波电真空技术、电磁 探测技术、传感器与微系统技术等方面取得 了重大进展。

对于电子所的发展,吴一戎希望能积聚 精力,整合资源,进一步满足国家对空天信息 领域科学技术的需求,满足国家重大战略部 署,支撑国家实验室建设。

他尤其关心基础性的科学研究工作:"我 们现在有团队在做微波光子学,也有做太赫兹 的量子电磁学,科学上哪怕有一点新的发现, 也会对技术产生影响深远的变革。我希望能够 面向未来科技发展,做更多基础性工作。

■发现·进展

中科院大连化物所

液流电池新体系 研究获进展

本报讯(记者刘万生通讯员谢聪鑫)中科院大连化物 所储能技术研究部研究员张华民、李先锋带领团队在液流 电池新体系方面取得新进展,开发出新一代高能量密度低 成本中性液流锌铁电池体系。相关成果日前在线发表于 《德国应用化学》杂志。

液流电池由于具有安全性高、储能规模大、效率高、寿 命长等特点,在大规模储能领域具有很好的应用前景。全 钒液流电池是目前发展最为成熟的液流电池技术之一,现 处于产业化示范阶段。但该电池仍存在能量密度较低、成

研究团队选择了成本较低的氯化亚铁和溴化锌作为 活性物质,构建了中性液流电池体系。同时,采用络合技术 解决了中性条件下铁的水解问题,并利用多孔离子传导膜 替代传统离子交换膜,解决了铁离子污染导致膜内阻升高 的问题。他们还提高了中性介质中离子在膜中的传导性, 从而大大提升了中性锌铁液流电池的性能和稳定性。

该电池在40微安/平方厘米工作电流密度条件下。 能量效率超过86%,连续运行超过100次循环性能无明显 衰减。更重要的是,与其他液流电池体系相比,该体系具有 更低的成本,表现出很好的应用前景。

中国农科院农产品加工所

发现大丽轮枝菌 与寄主互作新机制

本报讯(记者赵广立)近日,中国农科院农产品加工研 究所戴小枫团队在黄萎病病原菌——大丽轮枝菌与寄主 植物互作研究方面取得新进展。该研究首次发现大丽轮枝 菌角质酶参与损伤相关分子模式诱导寄主免疫反应的新 机制。相关成果日前在线发表于《分子植物与微生物相互

植物细胞角质化和栓质化能抵制病原菌的侵染,而病 原真菌通过分泌角质酶降解角质或栓质,从而突破该物理 屏障来实现侵染。角质酶也可作为不依赖于酶活性的激发 子被植物细胞表面受体所识别,参与病原与寄主植物互 作。上述生物过程多发生在病原侵染寄主植物叶部组织过 程,如稻瘟病菌、灰葡萄孢等病原菌。而对于侵染缺少角质 层根部组织的病原菌,病原通常无需借助角质酶突破这一 物理屏障。因此,角质酶在土传病原真菌中的作用一直不 清楚。

最新研究首次发现了大丽轮枝菌利用损伤相关分子 模式参与病原与寄主互作,明确了角质酶参与土传病原真 菌侵染根部组织的新功能,同时证实纤维素结构域兼具促 进酶活和抑制免疫反应的特性,为深入解析大丽轮枝菌与 寄主互作机制的全貌提供了理论基础。

中科院沈阳自动化所

中国机器人标准化 白皮书发布

本报讯(记者彭科峰)日前,记者从中科院沈阳自动化 所获悉,在由国标委主办、国家机器人标准化总体组承办 的《国家机器人标准体系建设指南》培训班上,《中国机器 人标准化白皮书(2017)》(下称《白皮书》)正式发布。

《白皮书》是由国家标准化委员会组织,国家机器人标 准化总体组第一秘书处单位中科院沈阳自动化所主编, 联合机器人领域多家科研院所、行业龙头、标准化机构共 同编制的,用于指导当前和未来一段时间内我国机器人 标准化工作。

《白皮书》介绍了国际和国内机器人的发展历程、现状 和趋势,以及国际和国内的机器人标准化工作的现状,全 面梳理了国内外机器人相关技术标准,并提出我国机器 人标准化工作的推进措施。

专家认为,《白皮书》对我国机器人标准化战略和规划 提供了有益的参考和指导,为我国机器人标准立项和研 制提供了科学依据,对推动我国机器人自主创新能力和 促进机器人产业健康发展提供了有效支撑。

上海市计划生育科学研究所等

建立用于抗原表位精细 作图的肽生物合成法

本报讯(记者黄辛)上海市计划生育科学研究所研究 员徐万祥和复旦大学生命科学院谢毅课题组合作,建立 了专门用于线性表位精细鉴定的生物合成肽法。相关成 果日前发表于美国《科学公共图书馆·综合》期刊。

据介绍,新改良法仍使用截短谷胱甘肽巯基转移酶 (GST188)作为基因工程表达任意短肽的载体,但通过在 pXXGST-1 质粒克隆区插入一蛋白基因, 既保留了原方 法主要特点,如编码 DNA 片段合成费用低、重组克隆构 建简便等,也形成两个新优点:可回收双酶切后的 pXXGST-3质粒,确保重组克隆构建成功率;不再需要对 照蛋白,通过诱导克隆菌总蛋白凝胶电泳筛选重组克隆 更方便可靠。

研究表明,该方法可实现目前其他技术无法企及的 目标,比如有助于解码任一靶蛋白抗原的 IgG一表位组; 有助于理解抗原性肽与表位(肽)两个术语的不同;也有助 于我国率先制定将抗体识别的表位肽基序特征作为非构 象型抗体药物的审批新标准。

生物质气化研究重点专项启动 本报讯 近日,"十三五" 国家重点研发计 划"战略性国际科技创新合作"重点专项"生 物质气化及热电气多联供系统研发及示范" 项目启动会在中科院广州能源研究所召开。 技术咨询专家组成员听取了项目汇报,并对

项目实施方案给予了充分肯定。 中国工程院院士陈勇表示,该项目的实 施将实现生物质气化技术及成套设备的升级 换代,提升我国生物质气化成套设备的国际 市场竞争力,推动我国可再生能源技术在东 南亚等"一带一路"国家的应用并取得共赢, 有利于探索我国科技成果国际转移转化的路 径和新模式。 (朱汉斌 徐超)

"绿色超级稻" 10 年累计推广 9000 万亩

本报讯 近日,"绿色超级稻新品种选育" 重大项目暨"绿色超级稻十周年"成果展示会 在华中农业大学召开。中科院院士张启发表 示,"绿色超级稻"概念提出近十年来,国内外 科学工作者构建了 3000 多份水稻基因组测 序数据库,成功培育出具备多个绿色性状的 水稻新品种65个,新品种累计推广面积达

"绿色超级稻"不仅是指具有绿色性状的 一类新品种,而且代表"高产高效、生态安全" 的生产模式和"资源节约、环境友好"的发展 方向。张启发认为,"绿色超级稻"倡导的"少 打农药、少施化肥、节水抗旱、优质高产"目标 完全契合国家"绿色发展"的战略思想,对驱 动我国农业绿色发展、保障粮食安全和农产 (鲁伟 刘涛) 品有效供给具有重要意义。

水安全与可持续发展高端论坛 在宁举行

本报讯 第二届水安全与可持续发展国际 工程科技发展战略高端论坛近日在南京举 行。论坛由中国工程院土木水利与建筑工程 学部、中国水利学会主办,南京水利科学研究 院和河海大学等共同承办。"一带一路"水与 可持续发展科技基金同期启动。

与会专家表示,随着全球性环境变化的 加剧,国家安全观念也在发生重大变化,水安 全已成为国家安全的一个重要内容,与粮食 安全、经济安全、国防安全等具有同等重要的 战略地位,受到世界各国广泛关注。(陆琦)

河南省批准建设 中原古陶瓷研究重点实验室

本报讯近日,经河南省科技厅批准,平顶 山学院申报的"河南省中原古陶瓷研究重点 实验室"开始建设。这是平顶山学院首次获批 省级重点实验室。

该实验室致力于研究古陶瓷的原材料成 分、资源分布及制作工艺,拟建设"中原古陶 瓷标本数据库""中原地区陶瓷工艺发展谱系 数据库",为中原古陶瓷的断代研究和品种的 划分提供可靠、权威的依据。 (史俊庭)

国际脂质科学与健康研讨会 在武汉召开

本报讯 近日,由中国农业科学院油料作 物研究所主办的第二届国际脂质科学与健康 研讨会在武汉召开。来自美国、澳大利亚、芬 兰、法国等9个国家的专家学者和企业代表 共计220余人参加会议。

会上,大连工业大学朱蓓薇院士、美国得克 萨斯大学韩贤林教授和油料品质化学与营养创 新团队首席研究员黄凤洪作了大会主旨报告。 34位中外专家围绕脂质分析与表征、脂质制备 与修饰、脂质改良与调控以及脂质代谢与健康 等4个主题作大会口头报告。(鲁伟邹仕乔) 台,极大地调动了科研人员的积极性。"

十九大的召开必将进一步推动我国科技发 展。"我们这一代人基本做到了让我国科技水 平和国际并跑,希望下一代年轻人可以不断 超越,使我国科技发展再上一个台阶。

研人员开展原创性科学研究的氛围。"

他表示,希望能进一步发展同行评价机

合成孔径雷达的研制,成功发射 10 颗合成孔 径雷达卫星;在空间行波管领域,实现在轨运

11月1日,法国拉斯科洞穴壁画复原展在上海科技馆展出。观众得以欣赏到《黑牛图》《交叠的野牛》

过5组真实大小的复制洞壁、4个栩栩如生的克罗马农人雕像、17段生动有趣的影像等,结合互动游戏和

《井底画》等拉斯科壁画代表作。 法国拉斯科洞穴壁画是举世闻名的旧石器时代洞穴壁画。1979年入选联合国教科文组织世界文化 遗产名录。此次展览是拉斯科洞穴3号巡展首次登陆中国。据介绍,该展览以洞穴传奇的历史为主线,通

华中地区首个量子通信城域网启动运营

据新华社电(记者黄艳)武汉市量子保 密通信城域网运营服务 10 月 31 日正式启 动,这是华中地区首个量子通信城域网。至 此,武汉市量子保密通信城域网项目一期 建设完毕,标志着武汉市正式进入量子通 信时代,成为我国量子通信网络的重要组成

负责建设该项目的中国航天科工四院 副院长伍晓峰在 2017 光谷航天激光技术 产业国际论坛上介绍说,武汉市量子通信 城域网实现了多个"第一";是世界首次采 用"经典一量子波分复用"技术的商用量子 通信网络; 是华中地区第一个量子通信城 域网;是目前国内用户节点数最多、设备规

模最大的量子通信城域网;是国内第一个 由企业建设运营、政府采购服务的量子通

珍贵照片,引领观众走进拉斯科世界,欣赏人类最早的艺术壮举。

据了解,该项目以政务网的量子通信应 用为切入点,可实现政务网的办公透明、廉 洁、高效管理,并确保政务数据的无条件安 全,成为我国政务网标杆。同时,还将整合和 运营武汉市政府各部门数据资源,形成政务 数据生态链,产生经济效益,带动武汉经济 发展。项目的正式启动,将大大提高武汉政 务、金融等网络信息本质安全度,实现通信 的"安全、自主、可控",为武汉城市圈和中部 城市群的崛起提供信息安全保障。

量子通信作为新一代高科技通信技术,

是国家"十三五"时期重要科技创新项目。近 年来,国家对于量子通信的专项投入和政策 扶持为其快速发展注入了强劲动力,量子通 信已经从科研阶段进入商业应用阶段,试点 应用和产业化呈现快速发展趋势。根据业内 估计,国内量子通信市场规模在3~5年内达 到百亿级,到2025年将达到千亿级。

本报记者黄辛摄影报道

伍晓峰表示,作为国内信息安全领域最 高精尖的技术,量子通信建设与网络安全建 设高度契合。中国航天科工依据军工背景, 结合保密通信需求,大力布局量子信息技术 产业,逐渐形成了从产业链上游核心元器 件,中游产品研发生产,到下游量子通信网 络建设与运营的产业链布局。

北斗全球组网卫星首发在即,院士解读

北斗三号比二号"高"在何处

本报讯(记者黄辛)以"融合·引领——高 精度定位导航"为主题的 2017 上海国际导航 产业与科技发展论坛日前在沪举行。中国卫 星导航系统管理办公室主任冉承其表示,11 月初,将实施北斗三号全球组网卫星的首次 发射;2018年底,要具备服务"一带一路"国 家和地区的能力;2020年前后,将向全球提

根据北斗系统"三步走"发展战略,2000 年,我国建成了北斗一号系统;第二步,建成 了由 14 颗组网卫星和 32 个地面站天地协同 组网运行的北斗二号系统; 第三步, 是到 2020年前后,建成由5颗地球静止轨道卫星 和 30 颗非地球静止轨道卫星组成的北斗三

中科院院士、北斗导航系统副总设计师杨 元喜介绍说,北斗三号与二号的区别不仅在于 卫星组网从区域走向全球,而且在载荷、星间 链路、激光通信等方面也有进步。如北斗三号 采用星载氢原子钟,其精度将比北斗二号的星 载铷原子钟提高一个数量级。又如,北斗三号 增加了卫星搜救功能和全球位置报告功能。

杨元喜认为,多源导航需要微器件集成 的支持,否则多源导航将会变得复杂、笨重, 高功耗。微器件集成要保证时间和空间的唯 一性,必须具备智能化、全空域的服务能力。 多源导航必须解决数据的融合问题。对此,他 表示,融合导航的实践经验我们并不丰富,还 需要做很多实验,国内具有自主知识产权的 系统和软件并不多,中国的融合导航之路是 非常漫长的,任务也十分艰巨。

在北斗三号卫星首次发射的重要节点 上,冉承其表示,必须着力做好北斗系统海内 外应用推广,不断深化卫星导航高精度服务 与云计算、物联网、大数据技术的融合,卫星 导航与高端制造业、先进软件业、综合数据业 的融合,促进北斗应用推广与解决国计民生 问题的有效结合,服务国民经济与社会信息 化发展。

中国工程院院士刘先林、谭述森、龚惠兴 等专家学者也围绕精度定位导航大众应用等 议题,展开了共性技术专题性交流和研讨。