Tel: (010)62580692

主编:郭勉愈 编辑:沈春蕾 校对:王心怡 E-mail:cxzk@stimes.cn

■||中国科学院 2015 年先进工作者系列报道⑤

欧阳竹: 躬耕麦田卅年, 碱地变粮仓

■本报记者 王晨绯

山东禹城县,中科院禹城综合试验站的主 楼里,李振声院士书写的"黄淮海精神"五个大 字醒目地挂在墙上。禹城综合试验站是中国具 有影响的野外综合试验站之一, 在解决旱涝、 盐碱、风沙等方面创造了独具特色的"禹城农

欧阳竹,现任禹城站站长,他是"禹城农业 模式"的参与者,也是"黄淮海精神"的实践者。 禹城站的实验楼里一张老照片上,年轻时的欧 阳竹身材瘦削、皮肤白皙。

黄淮海里战盐碱

虽然中科院地理科学与资源研究所有他的 办公室,但在北京基本找不到欧阳竹,扎根禹城 的三十多年里,禹城逐渐变成了他的"家"。

1983年,22岁的欧阳竹,在华南农业大学 农学系毕业后,被分配到刚刚成立的中科院禹 城综合试验站, 投身到了当时国家的重大任 务——黄淮海旱涝碱综合治理工程中。几年 后,欧阳竹作为禹城站的骨干力量投身至"黄 淮海战役"中。他白天在地里种地,晚上回到实

经过长时间的观测和试验,针对这一地区 干旱、渍涝、盐碱的自然条件,欧阳竹参加的科 研团队提出了一套增产的配套技术,包括多打 浅水井、灌淡水,阻隔地下咸水,鼓励农民挖鱼 塘、建农田搞立体种养,把地表的盐碱压下去。 在"黄淮海战役"中,欧阳竹和禹城站的科学家

们齐心协力,在黄淮海平原中低产田治理攻关 任务中积累了丰富经验,突破了一批盐碱地治 理的关键技术。

三十年,弹指一挥间。如今的禹城,也和三 十年前的海滨荒滩不一样: 嫩绿的麦苗, 成块 成行,向着远方蔓延。禹城的模样改变了,欧阳 竹也变样了——肤色黝黑、两鬓斑白。

打造"渤海粮仓"

盐碱地得到改良后,欧阳竹的脚步并没有 停下。他带领团队又打造了"四节一网"的资源 节约型现代农业模式,使用节水、节能、节药、 节肥和农业信息服务网的新式农业方式。

他们与当地水利部门合作,通过末级渠系 改造、墒情监测、按方收费以及在农村成立用 水者协会等方法,节约农业灌溉用水 30%以 上。同时,通过推广小麦、玉米免耕播种和合作 化统一作业,节约能源50%。目前,"四节一网" 的现代农业已经推广20多万亩。正是这些工 作为"渤海粮仓"项目的逐步推进打下了坚实 的基础。

此外,在禹城站的帮助下,还有很多先进 的农业技术在禹城落地生根。当年,禹城站从 中科院微生物研究所引进了"玉米淀粉加工低 聚糖"的技术。借助这一技术,禹城市现在已经 成为低聚糖、低聚木糖、木糖醇"三大糖"的生 产基地,被誉为中国的"功能糖城"

如今,以欧阳竹参与研发的这项技术为基

础,盐碱地改造技术经历了几代的演变日益成 熟,并成为2013年启动的渤海粮仓科技示范 工程的主体技术。而在由科技部、中科院联合 启动的这一项目中, 欧阳竹也是关键参与者, 先期的科技突破让他对目标的达成信心满满:

"到 2020 年增产 100 亿斤,没问题。"

农民的"送粮人"

作为禹城试验站站长,欧阳竹大部分时候

在充当"协调者"角色:一方面,中科院的科研 成果需要落地产生生产力;另一方面,区域发 展也需要联系和集成中科院各个研究所、各方 面的力量。如何巧妙智慧地斡旋其中,将中科 院的优势和地方的需求结合起来产生最大效 益,考验着这位站长。

欧阳竹平时话不多,但到了田间地头,他 三步并作两步地走进地里主动和农民攀谈起 来。"今年作物怎么样?肥料效果好吗?"禹城 站附近的当地老百姓形成了一个习惯:家家户 户把最好的酒收起来,等"欧阳老师"走门串户 时拿出来,用最质朴的行动表达着对"送粮人"

在长期艰苦的野外科技工作中,欧阳竹共 发表研究论文 120 余篇, 主编出版丛书 1 部、 专著1部,并先后获得中科院先进个人、中国 科学院科技进步奖一等奖、周光召基金农业 奖、全国野外科技工作先进个人、国家科技进

不过他本人对这些不太看重:"我们做观 测,是为国家积累数据,这是要做50年、100年 的工作。科学研究不能追求名利,科研成果如 果在实际工作中用不上,不能为国家解决问 题,那就没尽到科技工作者的责任。

三十年时间,从"黄淮海战役"到"渤海粮 仓",欧阳竹的脚印遍布鲁西北平原,他和他带 领的禹城站也从"战盐碱"转而推广现代农业。 相信通过他们的努力,海滨盐碱滩涂将变成富 饶的"粮仓"。

智

同

系

重

习记

者

丁宁宁

■转化

7月26日,在河北省最大的纺织企业——河北宁纺集团,召开了一场关于退浆精 炼生物复合酶制剂及染前处理工艺的技术成果发布会,中国科学院天津工业生物技术 研究所发布了最新研制的纺织用生物复合酶制剂。

纺织企业迈出绿色生产"第一步"

■本报记者 沈春蕾

"无论是博导,还是研究生,只要进了印 染车间,他们就跟普通工人没有区别。"高忠 强在纺织行业干了半辈子,是原天纺集团老 员工,现任河北纺联物资供销有限公司驻津 办事处经理。

几年前, 高忠强结识了中国科学院天津 工业生物技术研究所(以下简称天津工生所) 的一种复合酶制剂对纺织企业现行的冷堆和 长车前处理工艺均适用,合作也由此展开。

7月26日,在河北省最大的纺织企 -河北宁纺集团,召开了一场关于退浆 精炼生物复合酶制剂及染前处理工艺的技术 成果发布会,天津工生所发布了最新研制的 纺织用生物复合酶制剂。

宋诙告诉《中国科学报》记者:"该酶制剂 专用于纺织品退浆精炼的染前处理步骤,替 代传统碱处理工艺,将推动我国纺织行业从 传统的高能耗、高耗水、高污染工艺向绿色、 环保、可持续发展的生物新工艺转型升级。

节能减排刻不容缓

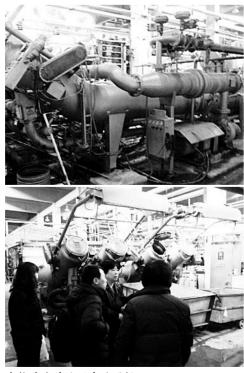
纺织工业是我国传统型支柱产业之一,在 我国轻工业中具有重要经济地位和雄厚的产业 基础。然而,不可回避的是,传统纺织工业也是 一个污染重、能耗高、耗水量大的行业。

高忠强发现,在我国传统的退浆、煮炼、 氧漂和丝光等染前处理过程中,应用大量的 烧碱和助剂等化学制剂,不仅耗费大量的水 和能源,同时还造成严重的环境污染。

来自天津工生所的统计数据显示, 我国单 位织物能耗为世界平均水平的 2.4 倍; 传统的 高温碱法染整前处理工艺耗用了大量蒸汽、碱 和化学助剂,以棉织物为例,1 万米棉织物处理 需 300 吨水;处理过程温度 95~100℃,占全工 艺能耗的 45%;纤维易损伤,设备易损坏。

宋诙指出,以上问题严重制约了我国传 统纺织工业的发展, 甚至国内已有部分大型 传统纺织企业在越来越高的环保压力下被迫

为此,她带领团队针对我国传统纺织行业 现状,开展了新酶制剂与绿色生物纺织工艺的 开发工作。该研究方向也被列为天津工生所"一 三五"规划中的五个重点培育方向之一,还得到 了天津市科技支撑计划的大力支持。


研发复合生物酶制剂

通过与天津天纺集团、河北纺联物资供 销有限公司的密切合作, 宋诙团队用三年时 间研发出多种性质优良的纺织用生物酶制剂 及其生产工艺,包括淀粉酶、碱性果胶酶、木 聚糖酶和过氧化氢酶等。

宋诙从专业角度解释道,用于棉织物退 浆精炼的复合生物酶制剂不仅能高效地分解 淀粉及 PVA(聚乙烯醇)浆料,还可高效专一

生物纺织酶技术成果发布会现场

生物酶法前处理实验现场

地作用于棉纤维外层结构的果胶层, 松动甚 至去除棉籽壳且不损伤棉纤维。

高忠强介绍, 传统的染前处理工艺流程包 括烧毛、退浆、精炼、漂白和丝光五个步骤,应用 宋诙团队研发的复合酶制剂可以将退浆和精炼 合并成一步完成,提高了前处理的效率。

其中,应用该复合生物酶制剂进行的纺 织酶法前处理工艺在低温下进行, 酶法长车 工艺的处理温度是50℃~55℃,酶法冷堆工 艺的处理温度 25℃~35℃,各自节约蒸汽 50%和25%;酶法冷堆工艺相对于碱法工艺还 减少了一段履带传动的水洗工序,可节省电

更为重要的是,酶法退浆精炼后的废水 中不含烧碱,无需酸中和,可节约大量水资源 及酸性试剂。因此,酶法冷堆的前处理工艺与 传统工艺相比可节约用水 50%。

由于生物酶法前处理工艺替代传统工艺中 的烧碱退浆和烧碱精炼过程,酶法前处理工艺 总体上可减少40%的烧碱用量,对于化学精炼 剂可实现完全替代,因此,生物酶法前处理工艺 可显著缓解纺织企业废水处理压力。

宋诙团队研发的复合生物酶制剂还可减 少纤维损坏、提高产品品质,降低成本、提高 经济效益。据天津天纺集团项目总工介绍,在 天纺集团的酶法前处理工艺应用中,12000米 纯棉棉布和 11000 米芳纶热波卡布的酶法前 处理与传统碱法工艺比较, 可分别降低成本 30%和 70%。

10 万米布成功应用示范

2013年5月至2015年3月,天纺集团应 用宋诙团队研发的生物酶法前处理工艺进行 了军用迷彩布、帐篷防水布、泡绉产品、芳纶 系列产品的小试和中试试验,获得成功。

在天纺集团完成中试后,因企业搬迁,天 津工生所与河北纺联物资供销公司达成长期 合作意向。"现在,双方强强联合,建成了研 发、试验、生产、推广营销一体化的专业团 队。"河北纺联物资供销公司董事长高建茹告

今年3月至6月,宋诙团队在河北宁纺 集团成功完成了 10 万米布的生物酶法前处 理工艺的应用示范和推广。"这为推动我国纺 织印染行业的可持续发展提供了科技力量, 将成为纺织行业发展技术革命的里程碑,为 低迷的纺织行业带来新希望。"高建茹说。

宋诙表示,团队接下来将与河北纺联继续 合作完善技术推广工作,组成技术支持小组,深 人服务到全国范围的印染企业, 预计未来三年 可完成10~20家纺织企业的推广应用,累积创 造新增利润达 0.5 亿~1亿元人民币。

她期望, 生物酶法前处理工艺能推动更 多纺织企业从传统工艺向绿色生产迈出"第 一步",并带来显著的经济效益、社会效益和 环境效益。

|||实验室

人工智能与生物智能的融合与协同能够发 挥两种智能所长,使它们优势互补、协同工作,被 认为是影响21世纪最重要的科技之一。2014年, 中国科学院深圳先进技术研究院(以下简称深圳 先进院)在"智能"与"健康"两大重点突破领域又 迈出学科交叉的重要一步,成立了中科院人机智 能协同系统重点实验室。

日前,中科院人机智能协同系统重点实验室 主任李光林在接受《中国科学报》记者采访时说: "我们实验室致力于探索人工智能与生物智能增 强与融合机制,研究开发智能服务、交互及医疗 康复机器人关键技术和系统,以应对我国劳动力 短缺、人口老龄化、残疾人康复等国家重大经济 和社会需求。

如何实现人机交互

当今社会,人们的生活和工作都离不开与机 器的交互,每天,我们需要与手机、电脑、汽车、家 庭电器等不同的机器进行交互。李光林表示,如 何实现人与机器的"自然""精准"和"安全"交互 是人们对人机共融系统的期盼。

李光林指出,从物理的层面来讲,人机交互 就是人和机器之间的互动; 而从智能的层面来 讲,人机交互就是机器智能或人工智能与人的智 能或生物智能的交互。因此,实现人机"自然、精 准和安全"交互的关键是人机智能之间的融合与

深圳先进院一直倡导和坚持"IBT"发展思 路,就是希望通过信息技术(IT)与生物科学(BI) 高度融合,实现智能机器人系统、医疗器械、创新 药物等多个学术方向的重大理论和技术突破。

为此,中科院人机智能协同系统重点实验室 主要面向人机智能系统的重大科技需求与产业 应用前沿,以高级人机交互智能系统为目标,依 托信息技术和生物医学工程,围绕生物智能与人 工智能融合及协同,重点解决多源感知觉和运动 信息的融合与编解码原理、生物智能与人工智能 的协同及互适应学习机理、人机协同系统混合智 能行为的实现策略等三个关键科学问题。

脊柱手术机器人问世

智能医疗康复机器人技术及系统是重点实 验室的主要应用研究方向之一,也是深圳先进院 "十三五"的"三大重点突破"方向之-

李光林介绍,中科院人机智能协同系统重 点实验室成立以来,在生物智能领域,开展神经 功能重建与智能增强、运动功能重建、言语功能 重建、智能诊疗等方向的研究; 在人工智能领

域,开展智能视觉信息处理、基于人 类认知学习的控制策略、面向复杂 任务的经验学习等方向的研究;在 智能交互领域,开展人机介入交互 机理、虚拟现实增强、体感交互系统 等方向的研究。

目前,中科院人机智能协同系统 重点实验室已经在智能脊柱手术机 器人与运动神经功能重建等领域取 得了一些突破性进展

据悉,实验室学术骨干胡颖博士 与北京积水潭医院合作开发的脊柱 手术辅助机器人系统,是我国首台完 全自主知识产权的骨科机器人,实现 了手术定位技术的重大突破。

在脊柱外科的手术过程中,细小 的差错将可能带来灾难性的后果, 因此手术要求医生操作精准。脊柱 RSSS 脊柱手术机器人

手术辅助机器人系统可 针对脊柱手术危险性高、 精度和稳定性要求高等 特点,辅助医生开展脊柱 外伤、退行性病变等手术 治疗,该系统也于2014 年和 2015 年先后获得了 北京市科技进步奖一等 奖和国家科学技术进步 奖二等奖。

交叉团队攻关智能

中科院人机智能协 同系统重点实验室定位 医疗和康复机器人,集结 了 150 人的交叉学科团 队,开展人机交互基础理 论和技术系统研究。研究 团队中大部分人具有海 外留学和工作的经历。

1999年,李光林在 美国伊利诺伊大学芝加 哥分校从事博士后研究 工作;2006年,他任美国 西北大学助理教授,并同 时任芝加哥康复研究院 资深研究科学家,从事神 经康复技术和机器人的 研究工作,参与了世界上 第一个"仿生人"的研究 工作。

李光林认为,突破人 机智能交互基础理论,发 展智能医疗康复机器人 关键技术和系统,不仅是 满足国家重大需求,同时 也是国际学术的前沿。

"随着工业机器人技 术及系统的逐渐成熟,目

前由人和机器人共同参与的人机互融机器人的 基础理论和关键技术是国际学术研究的重点之 一。人工智能擅长海量存储、快速搜索、快速精确 计算等;而人类智能擅长抽象思维、推理、学习等 高级智能活动。将人的智能和机器智能结合起

来,使二者优势互补、协同工作是实现人机自然、 精准交互的关键。"李光林说,"我们的团队学科 非常交叉,由神经功能重建、人机交互、机器视 觉、言语认知、触觉传感、三维重建等交叉学科的 科研人员组成。

