

CHINA SCIENCE DAILY

国内统一刊号: CN11 - 0084

主办:中国科学院 中国工程院 国家自然科学基金委员会 中国科学技术协会

官方微博 新浪:http://weibo.com/kexuebao 腾讯:http://t.qq.com/kexueshibao-2008

中外物理学家的科学竞赛

——"外尔费米子"的发现之争

■本报记者 甘晓

外尔费米子,是当今凝聚态物理最前沿的研究对象之

7月18日,一则消息引起中科院物理所研究员戴希的 注意。消息称,普林斯顿大学物理学家扎伊德·哈桑领导的团 队首次通过实验,在外尔半金属中造出了外尔费米子。

事实上,在戴希看来,是以中科院物理所为主的中国科 学家首次通过理论计算发现这种半金属,也是中国科学家首

戴希在这条消息下的评论中,认为这场风波属于"科学 界的竞争",是寻找"外尔费米子"的科学竞赛。

次通过角分辨光电子能谱发现了外尔费米子的存在。

实验:激烈的国际竞争

在物理学界,一个通过理论推导和公式推算出的结论必 须通过实验验证才能被承认。中科院物理所副研究员翁红明 告诉《中国科学报》记者:"没有实验证实,便不能称之为'发

出描述相对论电子态的狄拉克方程。1929年,德国科学家外尔 (H. Weyl)指出,狄拉克方程质量为零的解描述的是一对重叠 在一起的具有相反手性的新粒子,这就是"外尔费米子"

但是,80多年以来,科学家一直没有在实验中"发现"外 尔费米子。直到2015年1月初,依据中科院物理所研究员方 忠带领的研究组的理论预言和材料计算结果,中科院物理所 陈根富小组制备出了具有原子级平整表面的大块砷化钽 (TaAs)晶体,中科院物理所丁洪小组利用他们不久前在上海 光源建成的"梦之线"角分辨光电子能谱实验站上对 TaAs 晶 体进行测量,首次观测到外尔费米子的特征性现象——表面

该实验小组成员钱天告诉《中国科学报》记者:"通过'梦 推出晶体材料的电子结构。"只要观测到费米弧,就能断定外

2月16日,这个实验小组在物理学界知名的学术交流 网站 arXiv 上,公开了费米弧的发现,宣布外尔费米子被发 现,中国科学家领衔的团队被认为揭开了80多年来的世界

"arXiv 网站是物理学界影响力非常大的学术交流网站,

几乎同时,美国麻省理工学院以及普林斯顿大学教授哈

2月17日,丁洪研究小组把这项学术成果提交给了《科

值得庆幸的是,目前该论文在未作修改的情况下被在物 理学界极具影响力的《物理评论 X》接受发表。随后,丁洪研 究小组又在瑞士光源观测到 TaAs 中的外尔点及其附近的四 维外尔锥,这是外尔半金属的另一个根本特性,该研究成果

提到"外尔费米子"理论,则要追溯到1928年,狄拉克提

之线'探测从材料中激发出来的电子的能量和动量,就能反 尔费米子的存在,即从实验上"发现"了这种奇特的粒子。

其张贴文章的高质量使这家网站在谷歌学术评价上的影响

因子甚至超过了许多传统学术期刊。"翁红明说。

桑的两个实验小组也在 arXiv 网站上公开了类似的研究成果。

学》杂志。 然而,7 月 16 日,《科学》杂志在线刊登了哈桑小组 和麻省理工学院的研究成果,而中国科学家的论文被意外拒 稿。哈桑在电子邮件中回复《中国科学报》记者:"我们将实验 成果向《科学》杂志投稿,审稿中没有收到修改意见。

也即将在国际知名刊物上发表。

理论:中国人的原创

在理论上,中国科学家的原创工作更毋庸置疑。正是中 国科学家在拓扑半金属领域中开创性的理论工作,为外尔费 米子的产生和观测提供了新的思路和途径。

根据此前的理论研究,外尔费米子可能在"外尔半金属" 中被观察到,科学家一直致力于寻找外尔半金属。

2011年,南京大学物理学院教授万贤纲与几名国际研 究者合作,通过理论计算预言一种复杂磁结构的铱氧化物 可能是外尔半金属。同年,中科院物理所方忠、戴希团队也 预言铁磁尖晶石 HgCr₂Se₄ 也可能是外尔半金属。但是由于 磁性材料的复杂性,这两个理论预言的实验验证都变得非

为此,长期从事理论计算的中科院物理研究所方忠研究 组一直想寻找一种非磁外尔半金属。2012年、2013年两年 里,他们及合作者先后从理论上预言钠三铋晶体(Na,Bi)和 三砷化二铬晶体(Cd,As,)是狄拉克半金属,里面存在三维无 质量狄拉克电子,由一对重叠在一起的具有相反手性的"外

2014年,他们跟实验组合作,先后发表一篇《科学》和 《自然一材料》论文,证实了理论预言,被称为首次发现"三维 版本的石墨烯"。这为实现相互分离的手性外尔费米子迈出 了关键性的一步,而且使拓扑半金属领域的实验研究成为可 能,极大推动了拓扑半金属领域的进展。

该理论团队成员翁红明从发表于1965年的一篇实验文 献中受到启发,并通过第一性原理计算,初步认定砷化钽 (TaAs)晶体等同结构家族材料可能是外尔半金属。这类材料 能够合成,并且没有磁性,打破了中心对称,是实验制备、检 测都非常便捷的绝佳材料。

经过跟戴希、方忠等合作者进行了数月的周密计算和数 学证明后,他们更加确认这一结论。2014 年 12 月 31 日,他 们将此理论预言在 arXiv 网站率先向全世界公开。该成果立 即受到同行的关注,包括中科院物理所、北京大学、普林斯顿 大学等在内的国际上众多实验小组都投入到了竞赛般的实 验验证工作中。这项理论成果于今年3月17日在《物理评论 X》杂志正式发表。

1月5日,中科院物理所的研究团队收到了来自哈桑小 组的一封信。信中告知,他们也有类似的工作,并也将当时尚 未发表的论文张贴在 arXiv 网站上。

哈桑给《中国科学报》记者的回信中,强调了这篇论文的 重要性,并称"这篇论文于 2014 年 11 月提交给《自然—通 讯》杂志,比中国科学家的结果早很多"。

白春礼辽宁纵论创新、合作与改革

在领导干部科技创新报告会上指出:创新驱动发展要强化任务部署 参加院士专家辽宁振兴发展献策助力座谈表示:应加强创新人才队伍建设 调研中科院大连化物所时强调:四类改革试点先行是为摸索完善

本报讯(记者倪思洁)7月16日,中国科 学院院长、党组书记白春礼应激为辽宁省领 导干部作题为《新科技革命和产业变革与创 新驱动发展战略》的专题报告。他强调,我国 产业发展既面临着难得的机遇,也面临着严 峻的挑战,要做好创新驱动发展战略的顶层 设计,强化重点领域和关键环节的任务部署, 科技界要牢记使命,按照"三个面向"要求,努 力提升自主创新能力,积极发挥科技引领、支

扫二维码 看科学报

报告会上, 白春礼在回顾世界上五次科 技革命的过程和影响后表示, 科学革命是技 术革命和产业革命的先导和源泉, 错失历次 科技和产业革命的机遇,是我国近代以来长 期落后的重要原因。近年来,中国科学院组织

了 200 多位高水平专家,持续开展科技发展 新态势研究,聚焦未来世界科技发展新趋势。

他表示,新科技革命和产业革命将引发 产业技术和组织的深刻变革,为后发国家赶 超跨越提供了战略机遇; 我国经济发展水平 不断提高和市场不断扩大、社会需求越来越 旺盛,为我国科技创新提供了强大动力;全球 化、信息化深入发展,为我国充分利用各类创 新资源、在更高起点上发展提供了有利条件。

白春礼指出,目前我国产业发展创新能力 和核心竞争力仍然较弱,总体处于国际分工低 中端,一些重点领域还处于跟踪模仿为主的阶 段,一些关键核心技术仍受制于人;企业整体 创新能力薄弱,产业整体发展水平不高,技术 储备明显不足,75%的大中型企业未建立研发 中心,创新产出低,核心专利少;产业发展的能 源资源消耗强度大,矿产资源对外依存度不断 提高,发展中不平衡、不协调、不可持续问题依 然突出,人口、资源、环境压力大;企业"走出 去"战略受到发达国家的阻挠和限制。

白春礼强调,在此情况下,创新驱动发展 是大势所趋,势在必行。未来,要做好创新驱 动发展战略的顶层设计,强化重点领域和关 键环节的任务部署,要推动产业技术体系创 新;优化区域创新,打造区域增长极;加强原 始创新,增强源头供给;壮大创新主体,引领 创新发展;深化军民融合,促进创新互动;推 动创新创业,发展创客经济;建设高水平人才 队伍,牢筑创新根基;实施重大科技项目和工 程,实现重点跨越。

当天下午,中国科学院与辽宁省委、省政 府在沈阳举行"院士专家辽宁振兴发展献策 助力座谈会",院省双方就在辽科研人才队伍 建设问题达成共识。中国科学院院长、党组书 记白春礼,辽宁省委副书记、省长陈求发,省 委副书记许卫国出席座谈会。

在听取中国科学院院士张涛、李依依,中 国工程院院士王天然等院士专家为辽宁省振 兴发展提出的建议后,白春礼表示,中科院将 全力支持辽宁创新体系建设,进一步聚焦凝练 科技需求,集中优势力量实现制约产业发展的 重大科学问题突破,并建设高水平科技智库, 加强创新人才队伍建设,为辽宁创新驱动发展 提供智力支撑,同时完善工作机制,夯实深化 科技合作的平台和基础。 (下转第2版)

最强激光照亮细胞信号通路

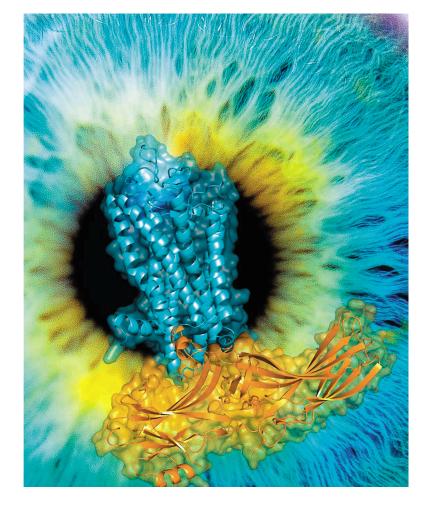
本报上海7月22日讯(记者黄辛通讯员徐晓萍) 中科院上海药物所研究员徐华强带领国际团队,利用 世界上最强 X 射线激光,成功解析视紫红质与阻遏蛋 白复合物的晶体结构,攻克了细胞信号传导领域的重 大科学难题。今天,这项突破性成果以长文形式在线 发表于《自然》。

2012年,诺贝尔化学奖颁给美国科学家罗伯特 莱夫科维茨和布莱恩·科比尔卡,以表彰他们在 G— 蛋白偶联受体(GPCR)信号转导领域作出的重要贡 献。他们的研究成果揭开了人体信息交流系统的秘 密,即身体如何感知外部世界,并将信息通过下游 G—蛋白发送到细胞,具有划时代意义。然而,GPCR 信号转导领域还有一个重大问题悬而未决,即 GPCR 如何激活另一条信号通路——阻遏蛋白信号通路。

G一蛋白和阻遏蛋白构成了 GPCR 下游的两条 主要信号通路。"在调节 GPCR 功能过程中,阻遏蛋白 和 G一蛋白分别扮演阴和阳的角色。"徐华强介绍说, 即 GPCR 能激活 G一蛋白的信号通路,而阻遏蛋白会 识别被激活的 GPCR 并使其内吞到细胞内脱敏,进而 阻止 G一蛋白向下游传递信号。近年来的研究表明, 阻遏蛋白还能够作为独立的信号转导蛋白,广泛参与 多种细胞生理活动,调节与 G—蛋白通路不同的生理 功能,比如人体感官功能和神经活动。

对于 GPCR 这一类膜蛋白来说,要得到晶体已经 非常困难,而获得 GPCR 与阻遏蛋白复合物的晶体则 "难上加难"。在过去的十年间,徐华强所领导的团队 一直致力于解析视紫红质和阻遏蛋白复合物的晶体 结构。视紫红质是一个经典的 GPCR,可以感应到光 信号,激活视觉功能。

最大的挑战来自获得的复合物晶体形态较小,未 能达到同步辐射光源所适合的尺寸,很难获得高分辨 率的图像。在交叉团队的紧密配合下,研究团队创新


性地利用了比传统同步辐射光源强万亿倍的世界上 最亮的 X 射线——自由电子激光(XFEL)技术,用较 小的晶体得到了高分辨率的视紫红质—阻遏蛋白复 合物晶体结构。该三维结构展现了阻遏蛋白与 GPCR 的结合模式,与 G一蛋白与 GPCR 相互作用截然不 同,为深入理解 GPCR 下游信号转导通路奠定了重要 基础。该结构也是运用XFEL技术获得的首个蛋白质 复合物结构,展示了 XFEL 技术在结构生物学领域的 强大应用前景,将对蛋白晶体结构生物学领域的研究

该研究不仅解决了世界级的科学难题,同时为开发 选择性更高的药物奠定了坚实的理论基础。徐华强解释 说:"GPCR 是目前最成功的药物靶标,迄今 40%左右的 上市药物是以 GPCR 为靶点。在药物发现领域,对靶蛋 白结构与功能关系的理解认识越深刻,开发出高效低毒 药物的几率越大。"因此,选择性靶向其中一条信号通路 的药物,也就是激活或抑制 G-蛋白或阻遏蛋白信号通 路,可能具有更好的疗效并有效降低毒副作用。

"徐华强团队的研究成果对理解 GPCR 功能具有 重大意义。"来自托马斯杰弗逊大学的 GPCR 领域专 家 Jeffrey Benovic 博士认为,"视紫红质和阻遏蛋白复 合物的晶体结构有助于人们理解 GPCR 的脱敏过程, 并为未来解析更多的 GPCR 复合物提供了新思路。

该项目由徐华强和美国温安洛研究所 Karsten Melcher 合作主导完成,项目合作者来自全球 28 个实

视紫红质和阻遏蛋白复合物的高分辨率三维结 构。蓝色所示为视紫红质的结构;黄色所示为阻遏蛋 白的结构。视紫红质感受外界光信号,并将光信号传 导到细胞内,产生视觉。阻遏蛋白参与调控视觉的产 图片来源:徐华强课题组

|"率先"这一年 | 访改革 看行动

中科院合肥大科学中心:

以科研"重器"开启创新之道

■本报见习记者 李瑜

"工欲善其事,必先利其器。"对于今天的科 学匠人而言,这句古训同样是普适的。

伴随着现代科学技术的飞跃式发展,科学研 究对其所依赖的实验条件有了更高层级的追求。 大科学装置的诞生,为人类探索自然奥秘的极限 提供了器物上的保障,使科学研究得以朝着更深 维度不断开疆拓土。

在中科院"率先行动"计划的蓝图中,大科学 研究中心更是被浓墨重彩地写人四类机构之内, 成为四轮驱动中的重要引擎。

大科学装置是开拓前沿创新的重要武器,也 是国家综合实力的重要体现。"大科学研究中心 的科技创新研究将以中科院大科学装置和平台 为基础,面向全国与全世界开放,以展现中科院 拥有无可比拟的特色和优势。"白春礼曾如此掷

地有声地评述建立大科学中心的深意与影响。 中国科学技术大学(以下简称中科大)与中

科院合肥物质科学研究院(以下简称合肥研究 院)强强联手,让中科院合肥大科学中心成为了 此类机构的首批入驻者。2014年11月,合肥大科 学中心正式启动筹建运行,为期一年。

尽管还未最终杀青,但在过去的近一年中, 一幕幕有关合作、创新的故事,正在这里演绎和 传递着。

大平台 大作为

在合肥人眼中,科学岛是城市中的一处世外 桃源。它的神秘不仅来自于那里的风物,也在于 人们所从事的工作,久居此地的科学工作者很愿 意将自己称为"岛民"

1998年,时任国家主席江泽民在视察合肥 物质研究院时,对这里的科研环境给予了高度评 价,并欣然题词"科学岛"。如今,随着中科院"率 先行动"计划的启动,科学岛也成为了全球科研 界的聚焦之地。

合肥同步辐射、全超导托卡马克和稳态强磁 场,是合肥大科学中心的三件镇宅之宝,其中两 件,便坐落在这座小岛上。

"另一个是中科大的合肥同步辐射装置,它 是中国最早的大科学工程。"对于合肥大科学中 心所拥有的资源与财富,合肥研究院院长、合肥 大科学中心理事会副理事长、筹备领导小组副组 长匡光力很是自豪,但却并无过多炫耀之词。

"我们就是一群搭戏台的人。"匡光力强调, 大科学装置为国家所有,向科学界共享,支持有 可能产生重大成果的科研课题,这样的理念在大 科学装置落成的那一天便已成共识。"现在,在大 科学中心的建设中,我们更加重视这些了。

对于慕名而来的学者们,大科学中心的态度 是:英雄不问出处。

"我们建起这么大的装置,不仅仅是为本单 位服务或系统内部服务的。"合肥大科学中心综 合管理部副部长胡纯栋向《中国科学报》记者指 出,大科学装置同样是对外开放的,高校和其他 科研系统的科学家也是大科学中心的重点服务

然而,稀缺资源也带来了争夺机时的压力, 谁上谁下,常常是一个艰难的抉择。

"在遴选标准上,不是某个人定的,我们有一 套完整的管理机制。"匡光力告诉记者,为了最大 限度地利用装置,合肥大科学中心成立了由不同 单位专家组成的用户委员会。"大家会遴选出那 些非常有前景和重要的课题到大科学装置上去 做实验,以保证重大科研成果的产出。

创新永无止境。尽管手中的"奢华家当"已让 世人艳羡,但合肥大科学中心的管理者们仍然不 敢懈怠。

"这些装置并非完美之作,需要根据遇到的新 问题来不断优化。"在匡光力看来,科学实验条件 的水平越高、环境越复杂,就会为研究者探索深邃 科学奥秘提供更多的机遇和可能。

可喜的是,三大装置在大科学中心的建设过 程中,性能得到了全面提升,并产生了一大批非 常优秀的科研成果。"这在很大程度上是因为我 们得到了更好的支持。"匡光力说。

其实,自成立伊始,两家合作单位的目标便 已明晰:利用大科学装置搭建出最强大的科研舞 台,让中国科学家能够在这个舞台上演绎出享誉 世界的科学大作。

"你中有我,我中有你。"匡光力认为,合作的 最大优势在于无须另起炉灶,两家单位在系统内 部已经实现了优势技术力量与人才资源的共享。 "这是一个非常有益的尝试和值得推广的经验。"

(下转第2版)