■速递

全球价值链与国际贸易 利益研究获重要进展

本报讯 商务部委托中科院数学与系统科学研 究院(以下简称数学院)承担的"全球价值链与国 际贸易利益研究"课题取得重要进展,日前该课题 的阶段性成果《全球价值链与中国贸易增加值核 算报告》在商务部网站发布。

自2012年5月起,商务部会同海关总署、国 家统计局、国家外汇管理局,委托数学院成立课题 组,开展我国贸易增加值核算及相关议题的系统 研究。课题组对 2010~2012 年我国与六大贸易伙 伴的贸易增加值、就业拉动等情况进行了核算,完 成了《全球价值链与中国贸易增加值核算报告》 (以下简称《核算报告》)。

该《核算报告》已经由商务部送交 OECD/WTO/UNCTAD等国际组织,包括 WTO首席统计师Hubert Escaith博士、OECD贸 易与商业统计部Nadim Ahmad处长、UNCTAD 投资司司长詹晓宁在内的多位专家高度肯定课 题组的研究成果,认为这些成果在国际上具有领 先地位,并将我国的相关经验为同样具有大量加 工贸易的墨西哥、印度尼西亚以及部分APEC经 济体分享。

课题组计划未来加强和相关机构的合作,将 反映加工贸易特殊性的模型与方法嵌入到全球投 人产出数据库和全球价值链的核算中, 更准确地 反映各经济体在全球价值链中发挥的作用和优势 (杨翠红)

成都山地所

举行四川省水土保持情况 普查专题报告会

本报讯 近日,四川省水土保持情况普查专题 报告会在成都举行。此次报告会由中科院成都山 地灾害与环境研究所(以下简称成都山地所)主办, 四川省水土保持生态环境监测总站、广西师范学 院、四川师范大学、四川农业大学、中科院成都生物 所等十余家水土保持研究院所和勘察设计单位的 60多人参加了会议。

此次报告会通过"四川省水土保持情况普查 的主要成果简介""西南土石山区土壤流失方程研 究与应用""四川省土壤侵蚀调查与制图"等8个报 告,详细介绍了第一次全国水利普查四川省水土 保持情况开展五年来取得的主要成果、关键技术 突破和科学认识。

与会人员围绕四川省土壤侵蚀现状、坡耕地 侵蚀问题、《四川省土壤侵蚀计算手册》和《四川省 水土保持省情手册》的编制与应用等问题展开了 热烈讨论, 为水土保持情况普查成果的应用与深 加工提出诸多宝贵意见和建议。

成都山地所作为第一次全国水利普查水土保 持情况普查专项的国家级、省级技术支撑单位,通 过五年的普查工作,按国务院第一次全国水利普 查领导小组办公室要求,全面完成了四川省水土 (雨田) 保持情况普查任务。

遥感地球所

召开 2014 年度"一三五"规划 项目进展汇报会

本报讯 为促进科研工作交流,扎实推进研究 所"一三五"规划实施,中科院遥感地球所于日前召 开 2014 年度"一三五"规划项目进展汇报会。

本年度交流汇报会分为重大突破、重点培育 方向大会报告两部分,其中,每个重大突破遴选三 个代表性成果进行大会专题报告。各重大突破的 首席科学家 / 总指挥与重点培育方向的首席专家 从项目实施进展情况、推进规划的组织保障情况 以及下一年度工作计划等方面进行了汇报,并重 点阐述了年度工作成果及国际影响力。

会议由"一三五"规划总体组、督评组及培育 方向首席专家组成评委会。在听取汇报后,全体 评委针对各项目的研究进展、成果、队伍组织以 及发展趋势等方面进行了书面打分,并提出评议 意见。

遥感地球所所长郭华东在总结讲话时指 出,历经全体科研人员的不懈努力,本次年度 总结展现出来的各项成果比去年有了较大程 度的提高。 (沈春蕾)

沈阳自动化所

申请筹建国家机器人质量 监督检验中心通过现场论证

本报讯日前,国家质检总局专家组一行5人,对 中科院沈阳自动化研究所申请筹建的"国家机器人 质量监督检验中心"项目进行了现场评审和论证。 专家组一致认为该项目具备了筹建中心的必要性 和可行性,建议通过现场审查,申报筹建。沈阳自动 化所所长于海斌、副所长梁波全程参加了论证会。

专家组认真听取了沈阳自动化所关于"国家 机器人质量监督检验中心"建设可行性、筹建方 案和前期工作情况介绍,考察了现有实验室技术 条件,参观了代表性企业新松机器人自动化股份 有限公司。专家组一致认为,"国家机器人质检中 心"项目符合国家产业规划和政策,顺应辽宁省 产业结构调整升级的需要,得到了当地政府的支 持,筹建任务书描述的筹建方案基本合理,建议 通过审查申报筹建

据了解,"国家机器人质量监督检验中心"建成 后将填补国内机器人产品质量检测的空白,加强我 国机器人产品质量监督力度,提升产业质量水平, 打破国际技术性贸易壁垒,增强国际市场竞争力, 加快我国机器人企业国际化进程的步伐。(戴天娇)

版纳植物园

石斛产业在西双版纳地区发展迅速,对于这类具有 较高经济价值的兰科植物来说,如何在有效保护野生资 源的前提下,对产业的健康和可持续发展形成科技支

撑,平衡好保护和利用之间的矛盾?

■本报记者 王晨绯

化解野生兰花困境现曙光

兰花拥有美丽幽香的花朵和清雅的叶片,自 古以来,作为观赏花卉或药材被广泛采集。因此, 我国的野生兰花正面临着疯狂采集和走私。兰科 植物成为了全球性最为濒危的植物类群,同时,兰 科也是国际自然保护联盟红色目录收录的受威胁 种类最多的科,已成为植物保护中的"旗舰"类群。

我国大约有350种兰科植物被用于传统的中 药材原料,约占我国兰科植物总数的四分之一,许 多种类由于过度采集而变得区域性濒危或灭绝。

兰之困境

"在兰科植物最为富集的西双版纳,石斛属的 很多种类和开唇兰属的金线兰等,被人们作为药 材而遭到了过度采集和收购,导致一些种类目前 在野外已踪影难觅。一些开花漂亮的种类,如大花 万代兰、鸟舌兰、版纳蝴蝶兰、大花鹤顶兰、多花指 甲兰和各种兜兰等,也被兰花爱好者大量采集。 中国科学院西双版纳热带植物园(以下简称版纳 植物园)研究员高江云告诉《中国科学报》记者。

因此, 生境的丧失和过度采集是兰科植物濒 临灭绝的两大主要原因。"兰科植物对生态系统 的变化极为敏感,一是由于对传粉者的高度专一 性和依赖性, 而生境的破坏可能首先影响到传粉 者; 二是兰科植物和真菌之间具有复杂的相互关 系。"高江云说。

二十多年前,高江云怀着兴奋的心情来到 神秘的西双版纳,在随中科院植物所首席专家 吉占和先生几次野外考察后,他对兰科植物产 生了浓厚的兴趣。而后,高江云在版纳植物园 组建了"濒危植物迁地保护与再引种"研究组, 专门致力于西双版纳和相邻地区兰科植物的 综合保护研究

兰科植物保护的基础是对其生境的保护、管 理和恢复,而基于植物生态学、传粉生物学、繁殖 技术、真菌学和种群遗传多样性研究基础上开展 兰科植物的回归,被证明是有效的综合保护策 略。"他和同事们在西双版纳 428 种野生兰科植物 中,将目光聚焦在石斛身上。

石斛属为兰科第二大属,全世界约有1500~ 1600种,主要分布于热带东南亚及大洋洲地区。我 国约有78种,其中有近40种药用。云南是我国石 斛种类最多的地区,约50种,主要分布在滇南的 热带和亚热带地区,仅西双版纳就有 48 种。西双 版纳是我国石斛的主产区之一,有22种石斛属植 物被加工成石斛商品。

上世纪80年代至90年代中期,由于早期 的石斛产业的发展完全依靠野生资源的采集,

使野生石斛资源遭到毁灭性破坏。直到90年代 末期,人工栽培才渐渐形成规模,并朝着产业化

目前, 西双版纳石斛生产有两种模式。一是由 大企业或公司进行集约化生产。他们以现代化的 大棚为种植基地,主要产品为铁皮石斛和齿瓣石 斛(紫皮石斛),种苗为种子无菌播种苗,同时采用 "公司+基地+农户"的模式。另外,还有一些个体 企业或农户依赖于野生资源,采用简易棚架进行 栽培,他们没有统一的石斛品种,所涉及的石斛种

"野生石斛被采集和收购以后,被分成不同级 别.一部分被直接加工成商品销售,另一部分用于 栽培扩繁,并通过石斛枝条的扦插获得部分种 "高江云和同事们通过多年的跟踪调查发现。

高江云陷人思考:石斛产业在西双版纳地区 发展迅速,对于这类具有较高经济价值的兰科植 物来说,如何在有效保护野生资源的前提下,对产 业的健康和可持续发展形成科技支撑,平衡好保 护和利用之间的矛盾?

共生真菌助力突围

"利益驱动型"的保护理念,不失为兰科植物 保护的新途径,即通过科技支持和资金帮扶,扶持 当地居民开展分散的仿生态兰花(石斛)栽培,把 增加居民收入和保护野生资源相衔接。

图片来源:百度图片

仿生态栽培指的是在人工自然或半自然条件 下进行栽培。它能平衡保护和利用之间的矛盾,把 增加居民收入和野生资源的保护相衔接。这样一 来,省去了昂贵的棚架、苗床、喷灌系统等基础设 施的投入和昂贵的日常管理成本,从而可以满足 贫困地区当地居民由于经济条件的限制无法承受 的高成本和投入。

材",也能卖个好价钱,与此同时减少野生资源的 采集。这时,种苗来源就成为一个主要矛盾了,也 是决定石斛仿生态栽培成败的最关键因素。 高江云团队分析了现有的几种技术: 采集野

仿生态栽培的石斛属于"高品质高药效中药

生植株是非法和不可持续的; 扦插繁殖种苗的繁 殖系数极低;种子无菌苗不仅成本高,而且在自然 条件下成活率较低、后期生长缓慢。 兰科植物的种子像灰尘一样细小, 需要在特

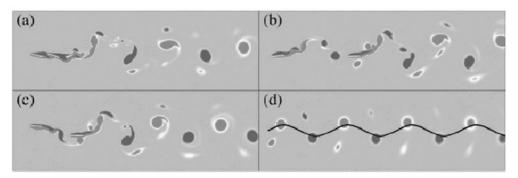
定的真菌帮助下,提供营养来促进其萌发和发育。 获得对种子萌发有效的共生真菌是开展兰科植物 种子共生萌发的关键。 经过两年攻关, 高江云团队成功分离得到了

齿瓣石斛和兜唇石斛种子萌发有效的共生真菌, 为开展这两种药用石斛的仿生态栽培奠定了坚实 兰科植物种子共生萌发技术的应用,在珍稀

濒危兰科植物的回归、药用兰科植物的仿生态栽 培等方面都具有巨大的潜在价值。

目前,他们已经完成该技术的中试,在野外有 20 多亩的种植规模。

西双版纳有着药用石斛生产得天独厚的自然 条件。齿瓣石斛主要海拔分布范围为 1100~1600 米,和茶叶的最佳种植海拔重叠,在很多茶园茶树 上都有自然生长的齿瓣石斛。而兜唇石斛为西双 版纳地区一种常见的石斛,常附生于海拔


600~1000米的林中树干或岩石上。 在这样的生境中发展石斛的自然种植,不仅 能给当地居民增加收入,同时可以防止森林被完 全砍伐和破坏,在一定程度上维持和恢复其生态 系统功能。

"今年雨季结束就可以推广应用。"高江云信 心满满。

力学所()

科学家揭示流体中自推进物体的长程相互作用机理

不同稳定分离距离条件下的涡量图

自然界中很多动物都存在集群运动行为, 比如鱼和鸟。在这些司空见惯的现象背后,存 在着很多科学上的未解之谜。其中物理学家最 为关心的两个问题是:首先,作为流体中的自 推进系统,它们形成稳定结构的机理是什么;

其次,稳定结构的集群式运动是否有利于降低 个体的能耗。

中科院力学所非线性力学国家重点实验 室的研究人员通过前后放置的两个细丝,来考 察自主推进物体在流体中的相互干扰问题。他

束。通过数值模拟的方法,他们研究了这样两 条前后游动的"机械"鱼之间的相互作用。 该项研究有两个重要发现:一是在两者的

们在两个细丝的头部施加垂直方向的简谐振

动来产生驱动, 在水平方向则不设置任何约

驱动频率和振幅完全相同的条件下,两条"机 械"鱼会自发形成稳定的分离距离。此时,后面 游动的细丝始终从前面细丝形成的尾涡的涡 核中穿过。二是驱动前面细丝所需的功率始终 大于或等于驱动后面细丝的功率。后面运动的 细丝省力的原因在于前面细丝的尾涡结构在 垂直于前进的方向上产生了较大的诱导速度, 从而有利于后面物体在运动中"借力"。在尾涡 结构有利的情况下,驱动后面细丝游动的功率 仅相当于前面细丝的80%。

研究揭示了自推进物体在流体中以涡为 媒介实现长程相互作用的机理。这个关键机理 的发现对于我们深刻认识鱼群等宏观自推进 系统的自组织行为具有重要的意义。(武佳丽)

||转化

金丸印刷:绿色"魔方"引领印刷业

■本报记者 杨琪

日前,第三届中国创新创业大赛先进制造行业 总决赛在武汉光谷落下帷幕。来自辽宁省的中科纳 新金丸印刷科技有限公司(以下简称金丸印刷)在 大赛中脱颖而出,获得优秀企业奖,成为辽宁省先 进制造行业唯一获奖的企业。

这家隶属于丹东金丸集团有限公司(以下简称 金丸集团)的高科技公司成立两年多,她专注一件 事情:为中国印刷业绿色革命贡献一份力量。

金丸印刷依靠的力量不仅有创业 17年的金丸 集团,还有来自中国科学院化学研究所(以下简称 化学所)、北京中科纳新印刷技术有限公司(以下简 称中科纳新)的高端智力和技术支持。

"3年前,我们引入纳米材料直接制版技术,与 化学所、中科纳新共同研发了滚筒式纳米材料直接 制版机项目。"金丸印刷总经理何福银回忆当时, "辽宁省科技厅组织的专家组对我们评价非常 一滚筒式纳米材料直接制版机采用的技术达 到国际领先水平。这不仅是对我们三方开展产学研 合作的充分肯定,也给了我们为地方经济作更多贡 献的鼓励与鞭策。

找到战略发展的抓手

金丸集团是一家以装备制造业为主的国家级 高新技术企业,其具备新产品研发团队和精密加工 的生产能力与条件,其中主导产品全自动药用胶囊 生产线、全自动药用胶囊充填机技术水平处于世界 领先,是国内同行业领军企业。

"面对未来,我们早已制定了清晰的发展方 向和重点项目。"何福银告诉《中国科学报》记者。

一方面,金丸集团生产的一些制药机器产品在国 内有相当占有率,有的产品则深受海外客户的青 睐。面对未来市场,他们没有"将鸡蛋放在同一个 篮子里",另一方面,"我们还着力开拓新兴领 域——纳米数字制版成套设备研制开发及其产 业化。"何福银说。

2011年4月,经中科院沈阳分院的牵线搭桥, 以及来自辽宁省与丹东市的支持,金丸集团与化学 所、中科纳新三方共同签署了《滚筒式纳米材料直 接制版机样机研制合作协议》。

"纳米材料直接制版技术"是第四代印刷制版 技术,是印刷行业的一场"技术革命",同时也是一 次"绿色革命"。与激光照排技术及近年来代表国际 先进印刷制版发展方向的计算机直接制版技术(简 称 CTP 技术)相比,它具有制版过程无污染、成本 低廉、工艺简捷以及无须避光操作等优点,彻底解 决了印刷制版过程中的污染和资源浪费问题。

在之后的近一年时间里,几家合作伙伴开始了 艰难的技术攻关。技术人员先后解决了滚筒式直接 打印输出模式下的进出版精密控制、图像斜向打印 控制算法、速度、打印范围、四色套印的精准等技术 难点,第一代"滚筒式纳米材料直接制版机"于 2012年初取得初步成功。"世界上第一台高速、宽 幅、滚筒式纳米材料直接制版机是在丹东诞生的!" 时过多日,何福银难掩兴奋。

可是面对印刷行业客户,制版是否能够成功 呢?于是,金丸印刷又将制版机搬到丹东日报社进行 实验。"报纸图片分辨率和文字清晰度好、耐印度好, 能满足现有报纸的印刷要求。"这是《丹东日报》分三 次进行制版成品试印刷后给出的用户使用报告。

"后来,我们又带着机器三次到辽宁新闻印刷 集团进行试印,试用该设备的新闻单位对绿色环保 纳米材料直接制版新技术生产的纳米材料 PS 板进 行试印刷。"何福银说。之后,辽宁新闻印刷集团在 "用户意见报告"中给出的结论是:"能满足报纸印 刷的技术指标、印版色彩还原和网点扩大率,基本 满足印刷要求。

"真金不怕火炼。"何福银感受到了高科技的

非常看好绿色印刷

有了这样的"铁证",推动其发展的力量自然更 多。该项目现已列入国家发展改革委 2012 年 7 月 20 日发布的《"十二五"国家战略性新兴产业发展 规划》和《国家发改委、中科院振兴东北老工业基地 行动计划》中。

在金丸集团的车间里,工作台上放着印好的鸭 绿江大桥图案,色彩明丽。在这里,你很难闻到刺鼻 的药水味,也很难听到震耳欲聋的机械声。在这里, 灯明几亮,一张张 PS 印版通过制版机直接形成,无 避光操作,并且没有废液排放,工人们只需要按照 印刷计划进行简单的操作即可。滚筒式纳米材料直 接制版机就是这样运转的。

金丸印刷进行了缜密的市场调研,对未来市场 信心满满。比如,纳米数字制版设备与国内外同类 产品对比优势凸显。现有 CTP 制版和激光照排制 版同样需要经过显影冲洗过程,消耗大量的化学药 液,对环境产生不可避免的影响;纳米数字制版设 备则不需要曝光、显影等感光与化学处理过程,克 服了化学药液造成的环境污染问题,实现了绿色环 保制版。

另外,纳米数字制版机成本低廉。该设备替 代了 CTP 制版和 PS 版晒版工艺路线, 节省了大 量贵金属(铅银),平均每块对 K 印版比 CTP 版 节省35元/张左右,如果以再生重复使用计算 的话,每块版的单价只有8元左右,体现出绝对

的成本优势。

印刷行业是一个具有丰富产业内容的巨大的 产业经济体系。目前中国印刷业已经发展成为对我 国国民经济有重要影响的行业之一,2013年我国 印刷工业总产值首次超过万亿元,年平均增长率为 18.1%。快速发展的巨大市场对具有自主知识产权 的先进印刷技术提出了迫切需求。

在2012年第一代"滚筒式纳米材料直接制版 "研发成功时,金丸印刷提交了28件专利申请, 其中申请发明专利12件。截至目前,先后获得25 件授权专利,其中发明专利9件。滚筒式纳米材料 直接制版机大大降低了我国中小型印刷企业使用 先进技术的门槛,具有广泛的应用群。

"纳米数字制版机作为纳米技术在印刷工业领 域的首先应用和研发产品,有着光明的前景,必将 牵动整个工业环节及相关材料的变革,由此产生相 互关联的产业链条。"何福银说。纳米数字制版机就 像一个"魔方",衍生出纳米墨水、纳米版材、纳米数 字印刷机,乃至对传统胶印机的结构变化都带来不 可想象的产业升级。

"根据充分的科学依据预测,该产业将在5~10 年内形成百亿元产值,甚至形成千亿元产值或更大 的产业链经济效益。"何福银说。