||动态

人工智能助力太阳耀斑预测

本报讯 截至目前,预测太阳耀斑一直是人类 面对的一项挑战。科学家尚未清楚了解这种巨大爆 炸背后的物理机制,因此预测它们何时与何地出现 需要依赖统计与数据模型。Phys.org 网站报道称,近 期一项类似于太阳动力学天文台的工程为人类了 解太阳活动的相关知识添加了大量数据,科学家已 经开始研究用人工智能预测太阳耀斑的算式。这种 智能设备可以通过分析来自太阳的矢量磁场数据 进行预测,然后根据已证明正确的结果,开始"学 习"什么样的条件会导致太阳耀斑。

科学家发现新抗生素

本报讯 近日,《自然》杂志上发表的一篇论文 描述了一种新的抗生素,它可以杀死一系列的致 病细菌。这种抗生素可以有效杀死对其他抗生素 耐药的细菌菌株,而且在暴露于这种抗生素的细 菌当中也没有发现对于这种抗生素的耐药性。至 于细菌最终是否会对这种抗生素产生耐药性现 在还难以确定,但是作者认为,如果这真的发生,

抗生素耐药性是个日益严重的健康威胁,而且 耐药性的蔓延速度比人们可以在临床实践中引入 新抗生素的速度更快。作为一个持续寻找新抗生素 努力的一部分,美国波士顿东北大学 Kim Lewis 及 其同事筛选了 10000 种在实验室标准条件无法培 养的土壤细菌中分离的化合物,土壤中的这些非培 养细菌是寻找新抗菌产品的一个有潜力的宝贵来 源。在这些化合物中,有一种名为 Teixobactin 的物 质,表现出了对于艰难梭菌、结核杆菌和金黄色葡 萄球菌等极好的杀灭能力。

Teixobactin 通过破坏细菌的细胞壁来杀死 它们,这种作用机制和另一种叫作万古霉素的抗 生素类似。Teixobactin 似乎通过结合多个靶点来 达到这样的效果,这或许可以减缓耐药性的发 展。研究者指出,万古霉素花了30年才出现耐药 性,而细菌对于 Teixobactin 很有可能要过更久才 会出现耐药基因。

新型探测器 可快速"嗅出"化学武器

本报讯这是一项了不起的发明。一种能"嗅" 出残存的极少量芥子气和路易氏气的设备可以 帮助保护那些负责清理化学武器的工作人员。

辨别这些神秘的分子通常需要复杂的设备和 缓慢的预备步骤来集中样本。相反,这种新方法利 用空气中的水蒸气处理分析前的样品。

该设备将可能含有化学武器样品的空气吸进 来,然后利用电击使水蒸气带电,从而分解样品中的 化学成分。反向气流会带走电击产生的任何高反应 性离子。当然,电击也可能摧毁少量已分解的化学武 器分子。剩下的成分随后会被质谱仪辨别出来。

来自日本科学警察研究所的 Yasuo Seto 主导 了该项研究。他介绍说,该设备能探测浓度仅为致 命水平百分之一的气体,并且已经开始用于搜寻二 战后遗弃在中国的化学武器。

鸟类受精有玄机

新华社电 日本研究人员在最新一期的英国 《科学报告》杂志上报告说,他们弄清了鸟类独特 的受精机制,这一发现将有望用于人工繁殖濒危

鸟类交尾时,雄鸟的精液(精子与精浆)进入 雌鸟体内,不过精子不会立即游向卵子,而是进 人输卵管内名为贮精囊的特殊结构中,在受精前 暂时储存在这里。此后,精子从贮精囊中逐渐释 放出,实现受精。

不过,鸟类的精子进入贮精囊的机制一直不 清楚。静冈大学、早稻田大学等机构的研究人员 发现鹌鹑的精浆中含有前列腺素 $F2\alpha$,具有打开 贮精囊人口、帮助精子进入贮精囊的作用。

研究发现,如果去除掉精浆只留下精子进行 人工授精, 那么即使将精子注入雌鹌鹑的生殖道 内,精子也无法进入贮精囊,几乎无法受精。但是, 如事先向雌鹌鹑的生殖道内注人前列腺素 $F2\alpha$,去

除精浆只留精子也能进入贮精囊并实现受精。 研究小组指出,与哺乳动物不同,鸟类的人工 授精技术仍处于开发阶段,由于冷冻保存的鸟类精 子的受精能力会大幅下降,因此在人工授精时添加 前列腺素 F2α,就有可能提高冷冻保存精子的受精 率,有助于人工繁殖濒危鸟类。 (蓝建中)

深海虾生有 12 个视网膜

本报讯 在光线昏暗的蓝色深海中,长着大眼 睛的动物视力更好,但大眼睛对于捕食者来说却过 于显眼。作为回应,体形微小(约10~17毫米长)的 透明甲壳纲类动物 Paraphronima gracilis 进化出了 一种独特的眼睛结构。

研究人员用远程操作设备在美国加利福尼亚州 蒙特利海湾200~500米的水深处搜集了这种动物。然 后,他们观察了这种动物的一对复眼,发现其每只眼 睛都由一排12个不同的红色视网膜组成。

研究人员近日在线发表于《当代生物学》的 报告称,由于每一个视网膜都可以捕捉一个图像 并被传送到这种甲壳纲动物的大脑,因此这种虾 可以综合 12 幅图像来增加视觉亮度与对比灵敏 度,从而适应不断变化的深海光线。科学家未来 将集中研究视网膜和大脑之间的神经连接会如 何处理这些图像。 (红枫)

首次核爆或为人类世时代开端

其他学者则将工业革命或农耕初期视为起点

本报讯 对于历史学家而言,第一颗原子弹 于 1945 年爆炸标志着人类进入了核时代。然而 对于一些地质学家来说,当年7月16日在美国 新墨西哥州阿拉莫戈多附近进行的这次试验却 代表了一个地质年代新纪元——人类世时代的

人类世一词最早于15年前出现,意思是人 类影响遍及全球的年代。从那时开始,地质学家 便一直在争论人类究竟是何时在岩石记录中第 一次留下了一个清晰的印记, 以及是否要将那 一刻作为一个地质单元的正式开始。

一些研究人员曾提出将人类世的开始— 同时也是当前地质年代全新世的结束——设置 在工业革命启动的时间, 乃至更早的农耕时代 初期。其他人则注意到20世纪后半叶人类活动

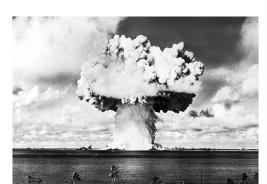
如今,一些国际科学家抛出了自己支持后 一种可能性的砝码, 进而建议将第一次原子弹 爆炸的时间作为人类世的起始点。

这篇在上周发表的论文的第一作者、英国 莱斯特大学地层学家 Jan Zalasiewicz 表示:"在时 间的长河中,这是一个意义明确的点——这是 一个重大的历史事件。

Zalasiewicz 与一个地层学工作组的另外 25 名成员完成了这项研究,该工作组旨在探索是 否应正式定义人类世。

在研究人员的论文中,他们提出通过跟踪 1945年第一次原子弹爆炸以及随后 10年中发 生的更大规模的原子弹爆炸向全球散播的放射 性元素,从而确定人类世的界限。

这些放射性元素的表象——例如长命的钚 239——或多或少与人类在第二次世界大战后的 若干年里造成的许多其他大规模变化相一致。 肥料的大规模生产使得环境中的活性氮数量翻 了一番,同时大气中的二氧化碳浓度开始飙升。 新形式的塑料开始大规模生产并在全球广泛传 播,全球贸易的增加使得一些攻击性动物和植 物在大陆之间传播。同时人们从农村地区向城 市中心的迁徙加快了速度,导致了大城市数量 的增长。这段时期被称为巨大的加速度。


然而其他学者则提出了不同的人类世开始 时间。日前,莱斯特大学考古学家 Matt Edgeworth 与人类世工作组的其他 5 名成员提出,用 天然地质学沉积物与被人类改变的地层之间的 过渡期作为边界,例如考古遗址中布满陶器碎 片的地层,或是被农耕犁过的土壤

这种"古代范围"出现在不同地点的不同时 期,就像经常被考古学家用来确定文化变革的 界限。例如,在新石器时代过渡期,农业在传播 到欧洲之前,已经在新月沃土生根发芽了数千

这两篇论文的联合作者、基沃斯英国地质 调查局地质学家 Colin Waters 表示,人类世工作 组目前仍在探索一些想法。他强调:"我们眼下 离下个定义还差得很远。

Zalasiewicz 表示,工作组的目标是提出一些 将会引发讨论的具体想法。工作组计划在2016 年就是否以及如何定义人类世向第四纪地层学 委员会提交一份正式建议。该委员会将会考虑 这项建议,并将它的决定传达给国际地层学委 员会,后者具有设置新的地质时代单元的最终

这个过程通常以一个非常缓慢的速度发

原子弹爆炸在地质学记录中留下了放射性

生;它可能需要几十年的时间来定义一个新时 代或改变一个现有时代。

Zalasiewicz 指出,2016年的期限"对许多人 来说是一个折衷方案,这些人会说:'我们为什 么不用一个星期或一个月来决定这件事?'而此 类时间量程通常是由工作组决定的"。(赵熙熙)

■美国科学促进会特供■

科学此刻 ScienceShots

苏联解体 殃及动物

政治动荡不仅会动摇政府的稳定, 还会殃 及动物。一项新的研究发现,一些大型哺乳动物 在苏联解体之后数量锐减。研究人员利用来自 俄罗斯联邦哺乳动物狩猎监测机构数据库的年 度数据评估报告,分析了8种大型哺乳动物的 发展趋势,包括狍子、红鹿、驯鹿、麋鹿、野猪、棕 熊、猞猁和灰狼,研究所取时间段为 1981~2010 年间,覆盖了1991年苏联解体前后的时间段。

分析发现许多动物数量增长出现较大变 化。除了灰狼之外,其他所有物种在苏联解体后 均经历了数量增长迅速下降的命运, 其中野猪、 鹿与棕熊等 3 种物种在苏联解体后 10 年数量增 长剧减,研究区域内这些动物的数量增长下降 了85%甚至更多。而与此形成鲜明对比的是,狼 的数量在 1992~2000 年间增加了 150%。而在过

图片来源:SERGEY GORSHKOV

去 30 年间, 北美与欧洲等政治稳定国家的哺乳 动物并未出现类似巨幅波动。

尽管其中的关联度尚不明确,但俄罗斯哺乳 动物数量变化极有可能是伴随政治动荡发生的 野生动物管理失效的结果。由于经济衰退与农业 荒废,人们可能会选择狩猎和偷猎获取食物与收 入。另外,政府管理措施缺位可能导致狼数量的

增加,这种现象可能会进一步加速野生动物数量 下降。研究人员近日发表于《保护生物学》期刊的 报告称,尽管没有更加明确的证据把野生哺乳动 物数量下降完全归结为俄罗斯政局动荡,但这些 发现确实引起了对社会福利与野生动物健康之 间联系的关注。

(冯丽妃 译自 www.science.com,1 月 20 日)

多国科学家会聚北京 研讨气候变化风险评估

本报讯1月19日至20日,在中国国家气候 变化专家委员会和英国外交及联邦事务部的协 助下,北京清华大学召开了一场由各国科学家和 专家参与的研讨会,讨论气候变化带来的风险以 及如何缓解这些风险。

此次研讨会由一系列别具特色的主题研讨 组成。在北京研讨会结束后,美国哈佛大学还将 举办一次类似的研讨会,随后印度和英国也将举 办相关活动。

专家们将金融、安全以及公共健康等领域的 风险评估原则应用到他们对气候科学的理解中。 他们不仅考虑气候变化最有可能带来的后果,也 考虑其可能带来的最严重后果以及人类适应这 些风险的能力是否会受到限制。

据悉,与会者包括英国外交大臣气候变化特 使大卫·金爵士、中国清华大学何健坤教授、中国 能源研究会周大地教授、美国哈佛大学环境中心 主任丹·施拉格教授、印度能源环境和水资源国 家委员会 CEO 阿鲁纳巴哈·戈什、巴西国家自然 灾害预警与监测中心何塞,马朗戈和英国精算协 会总裁大卫·黑尔。

大卫·金爵士在发言中说:"如果我们只考 虑气候变化最可能造成的后果, 那么无论预想 的情况如何令人担忧,我们都有可能低估风险 的规模。如果能像风险评估的其他领域一样考 虑所有的可能性,包括合理的最坏情况,那么我 们就能够很快了解到气候变化的风险是多么巨 大。我们和来自中国以及世界其他地方的同仁 一起所作的努力,已经加深了我们对于这些风 险的理解, 也使我们能够更好地作出适当的反

科学家发现雨味来源

本报讯 在生活中让人最舒心的气味名单 上,刚下的雨水可能处于前几位——或许会在 新生婴儿之后,而在巧克力棒之前。雨闻起来如 此舒心,其标志性的气味甚至还有一个别名:潮

现在,科学家已经利用高速相机捕捉到一种 奇怪的效应,它可以解释为何雨闻起来如此令人 身心愉悦。科学家可以看到雨滴表面出现了一层 细小颗粒(如图),《华盛顿邮报》报道称,他们推 测这种气雾与雨的气味有关。 (鲁捷)

最早的蝎子或来自海洋 壳,而不是骨骼,因此过于脆弱,不能被水流从 本报讯 蝎子的起源一直是个谜。对这种最

古老的蛛形纲动物(该类动物包括现代蜘蛛、 蜱虫、螨)的了解来自于距今 4.38 亿年前 ~4.33 亿年前的苏格兰沉积岩化石,然而却只能略窥 其轮廓。现在,加拿大安大略湖西南地区发现 的保存完好且时间上仅略晚一些的化石表明, 这种动物起源于海洋,而且它们爬上陆地的时 间可能比科学家此前认为的早得多。

那些化石——共 11 个样本——埋葬在 4.33 亿年前~4.30亿年前的古泻湖岸边的沉积岩 中。研究人员推测,由于它们全都是蜕下的外

图片来源:D. RUDKIN

其他地方带到其最终沉积的地方。研究人员近 日在线发表于《皇家学会学报 B》的报告称,这 些化石因此很有可能被它们的主人蜕在水边, 并在那里保存了下来。新物种的解剖特征也支 持这一推论:该生物明显没有陆地生活所需要 的进食结构。

然而,它们腿部的末段相对较短,可以让其 用类似现代蝎子一样的"脚"走路,而不是像同时 代其他水生蝎子一样用脚尖行走。当它们爬上陆 地后(以躲避水中的捕食者),这种蝎子可以充分 支撑其身体重量的能力有着巨大的进化优势,研 究人员注意到:和它们的现代近亲相同,当蝎子 蜕壳后,它们会变得尤其脆弱。 (冯丽妃)

(上接第1版)

话音刚落,始料未及,会场人口的角落里, 传来一串清晰的掌声。掌声来自当天的嘉宾之 一、云南财经大学社会与经济行为学教授顾秀

耐人寻味的是,顾秀林和饶毅之间其实堪 称"宿敌"。早在2012年,两人就曾展开过数次 笔战。2012年10月27日,饶曾在科学网博客 中写道:"不懂科学的顾秀林等少数固执的人, 更不懂转基因。"次日,顾在博客中回应:"如果 一味坚持无论转基因是否有毒有害也必须商 业化应用于人类食品动物饲料,那么他就是与 人类为敌。"10月29日,饶又以"理智的人们会 问,是否有必要和不懂科学的人争论科学问

题"开篇,对顾文逐句批判。 "现在,无论是支持还是反对转基因的人,应 该在一个公平的场合进行不只一次的直接对话或 辩论。"发言结尾处,饶毅提议。

而长期以言辞激烈著称于网络的顾秀林, 也在演讲一开始就说:"今天的辩论,我不会骂 人。"

科学与反科学

转基因问题是不是科学话题,成为辩论的焦

点之一。 对于"科学实验究竟靠不靠谱"一问,北京理 工大学管理与经济学院教授胡瑞法早就有备而 来。他分析了 SCI 论文中与转基因农作物相关的 9333篇,发现多数研究转基因安全性的文章对 转基因都持支持态度。而得出"不安全"或"存在 风险"结论的论文中,一半来自两个实验室:法国 的塞拉利尼实验室和意大利的马拉泰斯塔实验 室。这些研究被科学界认为要么实验样本少、统

计方法不可信,要么实验周期设计不合理。 不过,胡瑞法的数据似乎无法说服反转派。 "我们要警惕科学,警惕科学家。我们要剥夺科学 家的话语权。"北京师范大学哲学与社会学学院 教授田松直白地说,科学共同体作为一个利益共 同体,注定要与资本、权力结盟,"科学和技术正

是资本当下庞大的帮凶" "转基因问题不是科学问题,而是实践问 题。"同样无法被说服的,还有顾秀林。她坚信,来 自应用和实践的安全性判断才是最终裁判,"如 果一个科学产品的评估从起点就开始作弊,仅仅 朝研发者的利益倾斜,就无法进行诚实的、理性 或者科学的辩论"

正因如此,清华大学哲学系教授刘兵感慨, 转基因的争议首先不是个科学问题,而是科学从 实验室走向实践,在公众怀疑、不能被说服的情 况应该怎么办的问题。

福祉与风险

"转基因给人类带来的究竟是福祉,还是风 险?"中国人民大学农业与农村发展学院教授郑 风田在发言中提出了这样的问题。

在清华大学自动化系教授赵南元看来,转基 因作物的好处显而易见:"可以大量减少农药使 用量,使因农药中毒而死的农民数量大幅降低。'

"转基因毫无疑问是现代技术的一个重要组 成部分。"针对转基因作物偷种现象,中科院遗传 与发育生物学研究所生物学研究中心高级工程 师姜韬说,"偷种现象说明转基因好,每亩地原来

1000元的收入变成1200元,转基因带给大家的 好处是非常现实、具体的。

不过,对于反转人士来说,转基因带来的是 风险。"转基因作物不仅不能种植,而且也不能进 口相关产品。"顾秀林说。

与其他嘉宾相比,郑风田表现得更像个"中 间派"。近些年,几乎每场与转基因有关的辩论 中,都有他的身影。在长期辩论中,郑风田发现 "挺转派"和"反转派"走向了两个极端,"每一派 都恨不得把对方给掐死",他坚持的观点是,"不 反对转基因,但坚决反对转基因口粮"

作为 2015 年首场转基因舌战, 讨论会似乎 并没有如期望般以"和谐"告终。这边,主持人刚 宣布讨论会结束;那边,一位听众因对讨论会座 席安排存在异议,与负责维持秩序的工作人员在

会场出口处发生肢体冲突。 就在冲突发生的同时,胡瑞法等科学家正估 摸着什么时候将研究数据发布到网上;而会场的 大门外,反转人士迎着寒风,将被吹得颤抖的传 单递到刚迈出大门的观众手中,传单上印着"为 了您和家人的健康,请拒绝转基因食品"。