炮制"恒星"

全球科学家翘首期待德国"仿星器"测试结果

如果你听说过核聚变,那么你就听说过托 卡马克。这种像甜甜圈一样的设备在被加热到 让氢原子核熔化的超高温时,可以把一种叫作 等离子体的电离气体通过磁场圈在"笼子"中。 托卡马克是承载核聚变反应的设备。尽管对工 程师来说,它是一种固体的、对称的、操作简便 的设备,但是相关工程进展却单调乏味、冗长

现在,托卡马克难以驾驭的"表兄弟"也正 在走进视线。德国东北部的一个实验室中隐约 闪现着微弱的光亮,研究人员正准备启动一个 叫作"仿星器"的核聚变设备,这是目前为止最 大的核聚变设备。

这台斥资 10 亿欧元的机器名叫文德尔施 泰因 7-X(W7-X)。这个光芒闪烁的装置拥有 16米宽的直径,上面布满了各种形状和尺寸的 设备,无数的电缆从装备上蔓延到各个方向, 技术人员不时在此处彼处敲打修补。

期待转折

W7-X 看起来有点儿像电影《星球大战》 中走私货船船长汉·索罗的"千年隼"号,在经 过和帝国舰队的一次战役之后,正处于修理之 中。在其内部是重达 506 吨的磁线圈,这些线 圈就像被一个生气的巨人揉乱了一样,稀奇古 怪地缠绕在一起。

尽管仿星器从原理上说和托卡马克是一 样的,但它们却一直是聚变能研究领域的"黑 马"。托卡马克更有利于密封等离子体,并且可 持续保持高温,使内部反应不断发生。但是这 种类似西班牙艺术家萨尔瓦多·达利风格的装 置却具有许多独特之处,可以让其拥有更好的 商业核聚变能发电前景:一旦被启动,这些仿 星器就会自然而然地进入稳定状态,它们不会 产生困扰托卡马克装置的让金属变弯的磁干 扰。然而不利的是,它们的建造难度异常大,因 此耗用的金钱也会难以预计,并且比其他核聚 变项目的建成时间更加延后。"没有人想象过, 建成它意味着什么。"该项目德国负责人 Thomas Klinger 说。

W7-X 标志着一个转折点。这台机器坐落 于由 Klinger 担任所长的马普学会等离子体物 理研究所(IPP),并且正等待在11月被正式批准 运行。这是世界上首台由超级计算机设计的大型 仿星器新产品,计算机已经对其绝大部分保护外 壳可能遇到的问题进行了运算。如果 W7-X的 表现可以与一个同样规模的托卡马克装置相媲 美,甚至超过后者,那么聚变科学家可能就要重 新考量该领域未来的研究进程。"托卡马克研究 者们在翘首以盼即将发生的事情,全世界都对 W7-X 充满期待。"美国麦迪逊市威斯康星大学 工程学家 David Anderson 说。

W7-X 是全球首个大规模仿星器,它的组 装已经花费了110万个小时的工作量。它采用 须要经受得住剧烈的温差和巨大的压力。

全世界都在 等待着,看我们 是否能够达到约 束时间以及控制 其进行一次长时 间脉冲。

核聚变学家翘首以盼全球最大仿星 ─徳国 WX-7 核聚变装置测试结果。 图片来源: IPP BY C. BICKEL

仿星器面临着所有核聚变装置存在的挑 战:它们必须加热及承载超过1亿摄氏度的高 温气体,这是太阳核心温度的7倍。如此的高 温会从原子上剥离出电子,留下电子和离子构 成的等离子体。它可以使离子以足够快的速度 运转,以克服其相互排斥及熔化,但它同样使 等离子气体不可能容纳在常规容器中。 取而代之的是,这些等离子体会被约束在

个"磁笼"中。一根携带电流的电线会缠绕在 一个管道上,从而在管道中心产生磁场。该磁 场会对等离子体产生引力,使之远离磁笼的外 壁。为了阻止粒子在末端逃逸,很多核聚变早 期研究者曾把管道弯曲成像甜甜圈一样的环 形或是圆环,形成闭环系统。

但是圆环形状又产生了另一个问题:因为 靠近"甜甜圈"核心圆环的线圈比外围圆环的 线圈更为密集,因此其内环的磁场比外环的磁 场更强。这种不平衡性使得粒子脱离轨迹,撞 上磁场壁,其解决方法是对经过强磁场和弱磁 场的粒子增加一处转折,这样强弱磁场的影响 就可以相互抵消。

仿星器是在装置外围增加转折。首个仿星 器由普林斯顿大学天文物理学家 Lyman Spitzer 在1951年建造,该装置通过把管道折叠成数字 "8"的形状来实现这一目的。但是他建立的实 验室——新泽西州普林斯顿等离子体物理实 验室(PPPL)在后来的仿星器装置中转化了一 种更加简便的方法:就像一根拐杖糖那样,在 传统的环形管上缠绕更多线圈,从而在内部创 建一个扭曲的磁场。

在托卡马克装置中,上世纪50年代苏联发 明的一种设计则是从内部进行转折。该装置利 一个电力变压器,可以诱导电子 和粒子像电流一样围着管道运转。这样电流可 以产生垂直的循环磁场,当将其置于运行中的 另一个管道时,就会产生所需要的螺旋磁力线。 这两种方式都可以发挥作用,但是托卡马克装 置可以更好地控制等离子体。

在部分程度上,这是因为托卡马克的对称 性给粒子提供了更加顺畅的通道。而在仿星器 中, Anderson 说, "粒子会碰到很多涟漪和扭 动",这会让很多粒子在此过程中丢失。因此, 从上世纪70年代开始,大多数核聚变研究都聚 焦在托卡马克装置上,比如位于法国的国际热 核反应堆(ITER)项目。这是一项投资了160亿 欧元的托卡马克装置国际合作项目,它可以产 生远高于所消耗的能量,并为未来商业化反应

但是托卡马克装置也有严重的缺点。变压 器仅能以短脉冲方式驱动等离子体中的电流, 这并不适用于商业化的核聚变反应堆。同时, 等离子体中的电流还会动摇不定,难以预测,导 致"扰乱":突然间失去等离子体约束,释放出强 大的磁场,这种磁场足以毁坏反应装置。这些 问题甚至困扰着崭露头角的类球形托卡马克装 置的设计。

然而,仿星器可以免除这种困扰。它们的 磁场完全来自外部的线圈,因此不需要被动脉 冲,等离子体电流也就不会产生干扰。这两个 优势已经让一些团队开始研究相关概念。

翘首以盼

目前在役的最大仿星器是位于日本鸟岛的 大型螺旋装置项目(LHD),该装置从 1998 年 起开始服役。如果 Spitzer 看到这个装置,也会 模型基础上进行了一些改变的仿星器,它可 以扭转等离子体和其他线圈, 从而增加磁约 束强度。这个 LHD 装置保持着当前在役仿星 器的几乎所有主要纪录,表现出良好而稳定 的操作状态,它接近同样规模的托卡马克装 置的运行状态。

首次尝试部分优化仿星器的项目则是文 德尔施泰因 7-AS(W7-AS),该项目位于慕尼 黑附近加兴市的 IPP,于 1988~2002 年运行。它 打破了所有同规模仿星器创下的纪录。而威 斯康星州的研究人员在1993年开始建造第一 个全优化的仿星器, 其研发的装置就是螺旋 对称实验(HSX)装置,该装置在1999年开始 运行。"W7-AS和HSX表明了这种想法的可 行性。"物理学家、PPPL 仿星器负责人 David

这一成功增添了美国研究者试图建造更大 装置的信心。2004年,PPPL 开始利用和 IPP不 同的优化策略,建造国家级紧凑仿星器实验 (NCSX)装置。但是该项目在组装方面要求达 到毫米级的精度,这使得项目经费不断攀升,工 程日期不断延后。2008年,尽管该项目已经购 置完80%的主要部件,但美国能源部依然终止 了该项目。"我们竭尽全力作出的成本估算和工 程进度最终付诸东流。"PPPL 研究人员、NCSX 负责人 George Hutch Neilson 说。

视线再次回到德国, W7-X 相关工程正在 进行。德国核能源管理部门有望在近期批准该 工程继续推进。真正的检验还要等到 W7-X 充 满等离子体的时刻,届时研究人员最终将可以 看到它如何持续维持热量。"全世界都在等待 着,看我们是否能够达到约束时间以及控制其 进行一次长时间脉冲。"PPPL 研究员 Gates 说。 如果该项目可以成功, 那将意味着核聚变研究 (红枫) 进程中的一次巨大突破。

|||科学线人

全球科技政策新闻与解析

146 国减排承诺未达到 全球气温增幅控制目标

负责联合国气候变化框架公约的 Christiana Figueres 图片来源:UN Photo/Sarah Fretwell

在全世界领导人为下个月在法国巴黎举行的国 际气候谈判作准备时,联合国气候主管表示,迄今所 作出的减排承诺将无法实现全球平均气温和工业化 之前水平相比增加2℃——这一目标由政要们达成, 旨在阻止全球变暖带来的最危险影响。

"如此多的国家正参与到对抗气候变化的斗争 中,这是了不起的一步。它们作出的承诺是向巴黎 峰会交付的首批重要成果。"联合国气候变化框架 公约执行秘书 Christina Figueres 表示,"然而,尽管 我们在向着正确的方向前进,但这明显不够。

Figueres 在一场分析这些减排承诺聚合效应的 综合报告发布会上作出如上表示。截至10月1日, 已有146个国家提交了减排承诺。这些承诺被称为 国家自定贡献预案(INDC),是自愿性的。如果被全 部执行,它们将使全球每年二氧化碳排放量到2030 年减少40亿吨。报告发现,它们还将使人均碳排放 相较于 1990 年水平减少 9%。

然而, Figueres 表示, 如果没有采取进一步行 动,这将使全球平均气温到 2100 年升高 2.7℃。

这并不会让科学家或环保组织感到吃惊。他们早 已警告说,这些承诺还远远不够。Figueres介绍说,在 巴黎谈判代表希望基于现有承诺达成一项国际性协 议的同时,将确保定期审查和考虑下一步举措的条款 包括进来也非常重要。"我们需要的是渐进式的增量 努力——每两年左右审查一次,而这会带领全球走上 将增温幅度控制在2℃以内的道路。

比利时布鲁塞尔自由大学气候政策研究人员 Sebastian Oberthür 表示,为实现这一目标,工业化 国家和发展中国家必须再接再厉。

"没有哪个国家或团体能负担起暂停的责任, 并且说他们已经做得够多了。"Oberthür表示,但毫 无疑问,如果有着更大影响的美国、欧盟或中国能 带头设置更具雄心的国内目标,并向较贫穷国家输 送援助和技术,全球气候行动将势头大增。

已经提交的 INDC 是否将具有国际性的法律 约束力仍有待商榷。欧盟支持设定强制性目标,而很 多国家发现,这种想法很难被接受。Figueres认为,相 较于任何强制性措施,源自国家利益的自愿性目标 在获得执行方面可能拥有更大几率。

印度科学家抗议 非宗教主义者被杀

图片来源:Sanjeev Verma

过去一周,主流印度科学家就宗教迫害和3位 理性思维著名倡导者的死亡表达了关切。

此次行动是一次不同寻常的事件。在印度,科学 家极少迈出他们的研究范畴就社会或政治问题进行 评论。该行动紧随一些主流作家的强烈抗议而来。自 9月起,这些作家纷纷归还他们的国家级奖励,以抗 议政府未能阻止印度宗教的极端做法。

抵制迷信的活跃分子 Narendra Dabholkar 在 2013年被杀害,而政治家 Govind Panasare 和文学家 Malleshappa Kalburgi 分别在今年 2 月和 8 月被杀害。 3起死亡事件均被归咎于极端右翼印度教组织成员。 Kalburgi的被杀引发了来自作家的抗议。10月初,有 暴徒在新德里附近的镇上杀害一名被谣传屠宰了-头牛的男子(印度教将牛视为神圣的动物)。此后,抗 议加剧。10月22日,一群科学家追随作家们的抗议, 发起了向印度总统 Pranab Mukherjee 的网上请愿行 动,以抗议被杀事件。此次行动收集到268个签名。

10月27日,由新德里印度国家科学院、班加罗 尔印度科学院和阿拉哈巴德国家科学院设立的机 构——科学伦理科学院组织紧随请愿行动,发表了 一份声明。声明指出,印度宪法规定,"其公民必须 遵守并且支持理性和科学态度。

声明继续指出,"然而,我们悲伤且愈发忧虑地 发现了很多同宪法对每位印度公民的这种要求相 抵触的声明或举动的发生"。而它们应当"被消灭在 萌芽状态"

科学伦理科学院组织成员、印度国家科学院免 疫学家 Indira Nath 表示,该机构想"把理性和科学 思维带回主流社会。这是一份不关乎政治的声明, 也并非在和当下的政府作对"。

1天后,来自印度主要科研机构的100余位科 学家,包括国家级奖项获得者、3位英国皇家学会 会士和1位美国国家科学院外籍院士签署第二份 声明,就"迫害风气以及科学和理性在该国被侵蚀 的方式"表达了深深的忧虑。

千米冰层几日穿

超快速南极钻机助力气候记录研究

钻探冰盖是一项乏味的工作, 因为取回长 长的冰芯需要数年的现场工作。冰芯保持了可 回溯至几万年前的连续气候记录。 如今,深入探索地球历史有了一种更加快

捷的方法。气候研究人员急于获得拥有 150 万 年历史的冰盖,这几乎是最古老的现存冰芯年 龄的两倍。为此,他们研制了新一代"快速进入" 冰钻。其中,一些钻探用具在从10月开始的南 极野外考察季期间进行了首次大规模测试。

用这些快捷的工具穿透几千米厚冰层仅 需花费约一周而非数年时间。它们闪电般地穿 过冰盖最上层,然后到达下面的古代冻结层。 在那里,被困住的微小气泡充当了已消逝环境 的"时间胶囊"

最大和最具雄心的机器之一是一个名为"快 速进入冰钻"(RAID)的项目。11月,它将从位于 美国犹他州盐湖城的建造工地被运送到南极麦 克默多站。12月,"英国南极考察"则将在南极半 岛的蓝天站测试一个小很多的钻机。它的名字也 叫 RAID,是"快速进入同位素钻探"之意。

不过,这些钻机为追求速度而牺牲了细节。 它们在行进时会将冰凿碎或融化,因此提取一 块完好无损的冰芯是不可能的。然而,这些快 捷的钻机将能对研究人员在未来的野外考察 季有可能返回的地方进行快速考察,使其以更 加从容的节奏提取完整冰芯。例如,耗资 1005 万美元的美国 RAID 钻机,旨在约一周的时间 里穿透超过3千米厚的冰层。这种速度使其得 以在南极附近"四处游走",并且在每个考察季 都能钻探若干勘探点,而不是在几个考察季里

即便如此,找到地球最古老的冰层并非易 事。"我们正在寻找使极其古老的冰层得以保

冰芯使科学家得以分析过去的降水和温度变化。

存下来的一系列非常偶然的环境。"斯克里普 斯海洋研究所古气候学家 Jeffrey Severinghaus 表示。在理想状况下,科学家将发现一个厚厚 的冰层序列。它们未受到流动冰川的干扰,并 且没有被下面的岩石加热太多。可能的位置包 括一些高海拔南极冰穹,比如靠近中国昆仑站 的冰穹 A, 或者冰穹 C---欧洲研究人员用 5 年时间在此提取了一块到达拥有80万年历史 冰层的冰芯。

如今,研究人员想进一步推进,到达至少拥

有120万年历史的冰层。这将提供关于地球气 候一次重要转变的数据。当时,地球上的冰期周 期从由 10 万年模式主导变成一个 4.1 万年的

知道是什么控制了这一转变以及上升的 二氧化碳浓度是否起到一定作用,再加上诸如 地球旋转倾角的变化等因素,将帮助科学家更 好地理解随着全球变暖冰盖将会如何表现。"如 果我们不能弄清楚这一点,就真得无法了解我 们今天拥有的气候。"Severinghaus 表示。

察南极的过去。一日美国的 RAID 到达冰盖底 部,它能钻探进下垫岩石的50米深处。分析这 些岩石,能揭示它最后一次暴露于宇宙射线中 是在何时, 而这反过来又能揭示覆盖其的南极 冰盖部分的年龄。RAID的首次全面野外考察 定于 2016~2017 年开展。 英国 RAID 是一个更加"温和"的项目,耗

美国和英国的钻机采取不同方法深入探

资不到50万英镑(合77万美元),并且利用的 是改进后的传统冰芯钻机。它只能穿透至冰盖 约600米深处,也就是到达有着3万~4万年 历史的冰层。然而,不像美国 RAID,它无须使 用钻井液, 而液体的重量会为移动一台钻机增 加很多成本。

规模与美国机器相似的第3台钻机是正在 法国约瑟夫·傅立叶大学处于研制中的 SUB-GLACIOR 探测器。这个耗资 320 万欧元(合 530万美元)的项目,旨在融化而非凿开通往冰 盖的道路,并且在行进中测量融化雪水的化学 同位素,以计算冰层的年龄。约瑟夫·傅立叶大 学极地工程师 Olivier Alemany 介绍说,这台钻 机能穿透至几千米的深处,全面试验则定于 2016~2017年在南极康科迪亚站开展。 第4个项目名为RADIX,将利用一个很窄

的洞——直径仅有2厘米——在数天内行进到 3千米深处。团队负责人、瑞士伯尔尼大学气候 学家 Jakob Schwander 表示,它已在格陵兰岛经 过了极限测试。 没有人确切知道这些钻机在向下探底时

将遇到什么。它们可能穿透进冰盖下面的原始 湖泊,而微生物学家能对此进行研究。或者它们 可能揭示从基岩向上辐射出的热量,以科学家 未曾料到的方式融化着冰层。 (宗华)