

事实上,自2010年大旱后,西南喀斯特山区"工程性缺水"的问题已经被 各方所认识。西南各省各级政府都在探索各式各样的水利工程,但多年过去,依 然"效果欠佳"。

躺着:中科院西南治水加速度

■本报记者 彭科峰

水库露底、河水断流、农田龟裂、水井干 涸……不要以为这样的情景只会出现在中国 传统意义上的干旱区,2010年的西南五省区大 旱将中国西南地区工程性缺水问题暴露无遗。 多年过去,这里的情况有好转吗?

地处贵阳的中国科学院地球化学研究所 (以下简称地化所)是我国西南地区最重要的 科技力量之一,一直努力探索着喀斯特地区石 漠化的成因和治理技术,并且将其作为"一三 五"规划中的一个重要内容。

尽管已经在相关研究领域取得一定进展, 但在地化所副所长王世杰看来,要想彻底解决 喀斯特山区工程性缺水问题,仍须探索出一个 科学合理的方案。

有水却留不住水

在外界看来,贵州等西南地区多处于亚热 带湿润季风气候区,水资源丰富,降雨较多,理 应属于水量充沛、用水不缺的省份,而现实却

2009年至2010年的夏秋冬春四季特大连 旱、2011年的特大夏秋连旱、2013年的特大伏 旱,频度越来越高的旱灾对我国西南广大边远 山区民众的生产、生活造成了严重危害,尤其 以喀斯特山区的灾情最为严重。

降水都到哪里去了?

据王世杰介绍,西南喀斯特山区地处云贵 高原及其与广西盆地过渡地带,属典型的高原 山地构造地形,碳酸盐类岩石分布广。山地和 丘陵(以下简称山地)是其主要地貌形态,其次 是山间平坝区(以下简称坝地)。山地区土层 薄,一般只有30~50公分,储水能力弱;在土 壤层之下的岩石中往往发育有厚度数米至十 余米不等的孔隙和孔洞带,使整个山体就像布 满"筛孔"的"筛子"。降在坡地上的雨水极易通 过这些"筛孔"渗入地下,补给深部地下水,进 入地下暗河系统,在地表极难形成流水。

在科学家看来,这些地区地下水埋藏深, 以管道水形式存在,空间上分布极不均匀,开 发利用难度大,再加上地表水匮乏,是严重的

▶王世杰(左四)与专家进行实地考察

"工程性缺水"地区。

"西南喀斯特山区涵盖了3个国家级扶贫 开发攻坚主战场: 乌蒙山区、武陵山区和滇桂 黔石漠化片区。"王世杰介绍说,这里城镇化程 度低,大约三分之一左右的人口分布在位于坝 区的大中城市和城镇中,而另外三分之二左右 的人口,其中少数民族人口占一半,则分布在 山区的大多数村寨中——那里缺水严重,受干 旱威胁大;同时,西南三分之二以上的耕地为 旱坡地,分布在山区,面积大而分散,水源没有 保障,如果用管道输水或地下水开采,成本太 高,最容易遭受旱灾威胁。

"这也是旱情一旦来临,喀斯特山区受灾

面积大的主要原因。"王世杰说。

现有方案难见效

事实上,自2010年大旱后,西南喀斯特山 区"工程性缺水"的问题已经被各方所认识。西 南各省各级政府都在探索各式各样的水利工 程,但多年过去,依然"效果欠佳"

据记者了解,目前西南地区的水利工程措 施主要有三种:水库、机井开采和"三小"水利 工程(即小水池、小水窖、小山塘),它们在解决 喀斯特山区缺水问题上各有利弊。

喀斯特地区的水库比较容易发生地下渗漏,

不少已建成的小型水库都存在渗漏问题。"贵州 进入全国、省级病险水库除险加固规划的小型以 上病险水库就有829座。"王世杰告诉记者。

◀地化所的科研人员在遍地

石头的山谷中,修建了一条长达

数公里、宽 4 米的硬化机耕路及集

水沟,通过引水沟和集水沟相连,

将降水引到修建于道路下方的水

泥蓄水池(窖)中。

机井开采在地下水源丰富的坝地通常效 果较好,但在山区的效果就参差不齐了。

而"三小"水利工程适合解决大中型水利 工程难以解决的山区旱坡地的灌溉问题和部 分农户的人畜饮水困难。上世纪80年代以来, 水利、农业、烟草和发展改革委等部门在喀斯 特山区大力推进"三小"工程。"坦白说,成败参 "王世杰说,"很多'三小'没有认识到喀斯 特坡地径流系数低、产流少的特点,没有修建 集水面,因此常常面临来水不足、无水可蓄的 尴尬处境,没有发挥应有的作用。"

因地制宜 对症下药

如何不让降下的雨水白白流走? 如何应对 越来越频繁的气象干旱?

王世杰认为,科学合理地运用不同类型的 水利工程措施,是经济有效地解决不同地区干 旱缺水问题的关键。

在他看来,大中型骨干水利工程适用于解 决城镇供水和集中连片的大面积坝区农田灌 溉问题;机井工程适用于解决有地下水源保证 的村寨人畜饮水和部分高值农田的灌溉问题; "三小"工程则适用于解决旱坡地的灌溉和其

他措施难以解决的山区农户的人畜饮水问题。 实际上, 王世杰所在的中科院贵阳地化所, 近年来探索出了一种行之有效的解决坡耕地灌 溉难题的模式,即路沟池(窖)一体化建设模式。

在贵州省西部的普定县城关镇陈家寨村 地化所的科研人员在遍地石头的山谷中,修建 了一条长达数公里、宽 4 米的硬化机耕路。在 路的一侧修建了集水沟,通过引水沟和集水沟 相连,将降水引到修建于道路下方的水泥蓄水 池(窖)中。他们还特别引进了一种防渗漏的高 密度聚乙烯塑料"水工布",利用遍地石头自然 形成的石坑,把这种水工布覆在上面,自然形 成了178口蓄水池。农民可以通过大大小小的 管道,将蓄水池的水引入农田和菜地。

2011年以来,地化所的科研人员还在黔西 南的晴隆县、毕节市纳雍县等典型石漠化山区 修建了这种路池集雨的科学示范工程,在应对 旱灾方面成效显著。

"它不但能解决农田灌溉问题,还能解决 田间运输问题。"王世杰告诉记者,推广这项技 术,只要在县域层面上捆绑和组合目前现有的 通村和村组公路建设项目、以工代赈与扶贫开 发涉及到的机耕道建设项目、现有的坡耕地改 造与建设项目和"三小"微型水利工程建设项 目就可以实现。

他希望这种技术在喀斯特地区能够得到 进一步的推广。

赵川:高原上的科学青年

■本报记者 彭丽 通讯员 张轶佳

博士喜获英国生态学会青年研究学者奖,成为 2013年度全球在该学会所属期刊发表年度最佳论 文的五名青年科学家之一。谈及获奖,赵川很谦逊, 脸上并没有流露出过多的笑容, 只轻描淡写地表 示:"挺意外"。

灵感源于观察

这篇获奖论文是关于甲虫通过驱使<u>新</u>躬图低 土壤层从而促进植物生长的研究。杂志编辑给予如 此评价:"我们很喜欢这篇论文简洁的实验设计以 及不与传统理论相符的有趣结果。这项工作还增加 了一个新的方面的研究:甲虫如何影响植物和生态 系统以及其在陆地生态系统中如何发挥作用。'

聊起论文从选题到构思的过程,赵川说,灵感 来源于一次野外考察。

2010年,他跟同学在阿坝藏族羌族自治州所 辖的红原县做实验。路过牛粪堆时发现甲虫正在 吃牛粪堆里的蚯蚓,他便蹲下来观察,发现甲虫惊 得蚯蚓四处逃逸。"牛粪堆是为植物提供营养的, 蚯蚓分解牛粪则能促进植物生长。"于是,赵川提 出了一个大胆的假设: 甲虫会对植物生长产生负

顺着这个假设,赵川开始查阅大量文献,并开 始着手进行预实验。他与课题组成员在青藏高原东 部典型的高寒草甸,通过野外微宇宙控制试验,模 拟构建了土壤有机质、蚯蚓、甲虫三级食物链。赵川 告诉《中国科学报》记者,实验方案的确定是其间遇 到的最大困难,在最初的几个月里他对实验方案设 计没有丝毫把握。

"我从没想过要中途放弃实验。"赵川说,科学 研究有趣之处就在于发现现象,并透过现象慢慢揭 开其本质。他前后花了两年时间进行取样观察,得

3月10日,中国科学院成都生物研究所赵川 出了一个与多数人直觉相反,并且十分有趣的结 果:甲虫并没有改变蚯蚓的数量,而是迫使蚯蚓向 深层土壤转移,从而间接地提高了下层土壤的孔隙 度和有效养分含量,并增加了植物地上生物量。

耐得住寂寞

自 2007 年读研开始,赵川每年都会有大半的 时间在野外做实验。这个来自河南平原的小伙子刚 上高原时还是有些不适应,眼眶充血、鼻子流血,同 时还得对付高原上凶猛的蚊子。"穿着裤子都能咬 一个大包。"赵川乐呵呵地比划着。不过,他很快适 应高原的气候环境了,并融入了当地生活。

有时做实验需要挖土柱,临时请不到工人,赵 川就与同事卷起裤腿自己挖,在高原上做这样的重 体力活,他仍然很带劲。由于长期日晒,赵川皮肤有 些黝黑,藏胞们常以为他是当地人,会用藏语和他 打招呼,每当这时赵川总是不停地点头微笑。

赵川说,在高原上生活作息很有规律,早上7 点起床外出实验,晚上11点左右准时睡觉。闲暇时 候会去钓鱼、采蘑菇,有时候遇见下大雨就做好吃 的犒劳自己。不过,这种被赵川描述得有些像世外

桃源的野外生活还是有很多人不太习惯。 "他是一个很耐得住寂寞的人。"课题组同事 何奕忻告诉记者,赵川经常在野外一待就是几个 月,从没有听他有任何抱怨,总是乐在其中。"他很 享受野外调查, 更享受观察发现不同的自然现象, 并揭示藏在现象背后的本质。

做好手头的事

从本科读到博士,赵川学的都是生态学。他说 自己从没有过多地设计人生,也没有制定宏大的目 标,只想踏踏实实做好手头的事情。"做比说要强多 了。"赵川表示,导师孙书存研究员的学识和为人对 他影响很大,"导师科研非常用心尽力,经常加班到 凌晨,慢慢地我也养成了多做事少说话的性格。

平时,赵川喜欢读历史、哲学、宗教等人文方面 的书籍。他说能从中吸取到正能量,保持乐观豁达 的心态。"我喜欢工作与生活相平衡的状态。"赵川 希望自己在闲暇时能多培养一些兴趣爱好,丰富内 心世界,以一种积极向上的姿态工作和生活。

目前,他在刚完成自然科学青年基金申请的 工作后,便立即参与到他现在所在的全球变化生态 学课题组"青年973项目"的申请工作当中。

"科研要靠长期的积累,不同学科内涵不同,生 态学研究就是要在大自然中多观察,描述大自然现 象,揭示出普遍规律。"赵川很庆幸身处青藏高原作 研究,"这里空间异质性强,自然现象千差万别,为 科研提供了广阔舞台。

安徽光机所()

为南极泰山站候选天文站址提供大气光学参数支持

3月21日,南极地区结束极昼现象。同 时,从中国第30次南极考察队内陆队传来消 息,中国科学院安徽光学精密机械研究所(以 下简称安光所)大气光学中心集成研制的"近 地面大气光学参数测量系统"自动、连续采集 数据近3个月,为迎来南极泰山站首个天文 观测季累积了持续有效的大气光学湍流、常 规气象参数等重要大气参数。

大气湍流是大气中的一种重要运动形 式,大气中的动量、热量、水汽和污染物的 垂直和水平交换主要是通过湍流进行的。 大气湍流对光波在大气中的传播产生影 响,因湍流引起的星光闪烁是一种常见的 日常现象,它是造成地基光学望远镜成像 质量严重下降的主要因素。寻找湍流较弱

宁静大气的站址放置天文望远镜是天文学

家追求的目标。

"近地面大气光学参数测量系统"在南极 地区首次采用通过测量大气温度的起伏来获 得大气湍流折射率起伏特性的温度脉动法获 取大气光学参数,在具有极低的天空背景辐 射、极低的可降水含量、极低的气溶胶和尘埃 颗粒物含量、非常小的光污染的南极大陆(也 因此南极是下一代大型光学天文望远镜地基 站址的理想场所)观测效果明显。

该系统自 2013 年 12 月 30 日开始进行 自动数据采集,无人值守,在零下40℃低温 环境下运行良好,连续观测近地面两层气 温、相对湿度、风速风向,以及气压、地表面 辐射温度、大气光学湍流强度等多种参数,

积累的南极地区近地面大气光学湍流强度 等重要的大气光学参数数据,为评估南极 内陆地区候选天文站址品质,建设大型天 文观测设备提供科学依据。

由于天文观测的特殊性, 南极地区的 极夜现象为天文观测提供了极大的便利。 极昼结束之时, 南极地区安装的高精度天 文观测设备就可以运行, 最初每天可以观 测几个小时,当极夜来临时,就可以进行连 续数月的持续观测。

作为中国在南极建设的第四个考察站, 2014年2月8日建成的泰山站拥有海拔 2621米的高度、位于地球轴心 100公里范围 内地理位置,并经常有陨石坠落,是研究天体 变化的重要科考站点。 (吴晓庆)