从基础研究到 应用基础研究再到 工程技术研究和高 新技术产业化,长 春光机所的工作一 直体现着光电领域 的创新价值链。

打造国家重大创新基地

"当年,这片山坡附近还没有茂密的树林,远处 也没有密集的楼群,是观测和实验的理想场地。"在 长春净月潭国家森林公园内的王大珩纪念园里,一 位工作人员向一群来自中科院不同研究领域的青 年科研人员介绍道,"王大珩先生于是选择了这里 建设中国科学院长春光学精密机械与物理研究所 (以下简称长春光机所)大气光学观测站。

足下踏着王大珩先生曾工作过的土地,人们变 得肃静,一一向王大珩先生的铜像行注目礼。

王大珩先生的雕像远眺长春,神情肃然。曾经, 他期待依托长春光机所将长春市建设为国际光学 城,打造中国光学的托拉斯。带着这一梦想,他风雨

现在,按照"创新 2020"总体要求和中科院"一 三五"规划部署,他的继承者们也为这一目标而奋 斗着,"长春光机所正努力争取成为国家重大创新 基地的首批试点单位。"长春光机所副所长金宏近 日在接受《中国科学报》记者采访时说道。

定位: 高精尖背后的"渊源"

长春光机所"一四五"规划中的"一"即一个定 位:面向国家战略需求和世界科技前沿,以高技术 创新为主线,聚焦于国防战略性核心技术和原始创 新,从事光学和精密机械等领域的基础研究、应用 基础研究、工程技术研究以及高新技术产业化,引 领国家光电领域自主创新发展,成为多学科综合性 研究所。

实际上,自建所以来,伴随着国家发展,长春光 机所一直在凝练自身定位。

规模大、人员多、领域内学科涵盖广泛等一直

是长春光机所的特点。从基础研究到应用基础研究 再到工程技术研究和高新技术产业化,该研究所的 工作一直体现着光电领域的创新价值链。

从上世纪90年代开始,以时任长春光机所常 务副所长曹健林与副所长宣明为代表的领导班子 提出了"产研贸"的思路;宣明任所长后,领导班子 提出了建设"研产学贸并举"多学科综合性研究所 的发展方针,这也是过去几十年研究所不断思考、 创新和改革的结果。

同样,长春光机所多年思考和创新的还有"四 与"五","四"为四项重大突破,"五"是五个重点培 育方向。"四"与"五"是按照中科院"创新 2020"发 展战略相关要求,长春光机所详细剖析自身发展历 程与国家未来重大战略需求,结合该所特点和优势 以及现有技术基础凝练出来的。

四项重大突破和五个重点培育方向都有着深 厚的历史"渊源"——如四项重大突破中的大面积 高精度光栅制作技术,在1952年长春光机所建立 之时便开始研究;五个重点培育方向中的自由曲面 偏轴光学技术,正是长春光机所在长期积累而系统

金宏

掌握离轴光学技术的基础上,给自己加码提出的更 高追求……

现在,长春光机所按照"点、线、面"科学部署原 则,加强基础性、前瞻性、战略性的科研布局和投 人,努力实现基础研究、应用基础研究、工程技术研 究及科技成果转化四者有效衔接,实现从资源导向 向目标导向的转变。

进展: "神秘"大所里的新动静

这些年来,长春光机所在国际上已具有一定影 响力。但细说起来,人们却发现这是一个"神秘"的 研究所,外界对其总体印象更多是定位在军工项目 的研究,不清楚这支"国家队"的发力点。

而以长春光机所所长宣明为首的领导班子早 已意识到,"若要建设一个国际一流的研究所、国际 一流的光学基地,必须拥有国际一流的技术。

基于此,结合建设至今所布局的学科和技术 长春光机所凝聚出四项重大突破,即大面积高精度 光栅制作技术、4m级大口径光电设备制造技术、紫 外/极紫外光学技术与高亮度超大功率光纤耦合 半导体激光器技术。

长春光机所希望经过5~10年的努力,在这些 领域率先研发出国际上叫得响的一流技术。

目前,四项重大突破均已取得阶段性成果,例 如 4m 级大口径光电设备制造技术。

针对 4m 级大口径光电设备制造技术,研究所 选择从光学领域进行突破,该技术所涉及的光学系 统单元技术都成为科研团队的课题, 无论是材料、

光学加工技术,还是镀膜、支撑和检测技术。 "现在,我们已掌握 2m 级大口径光电设备的 制造技术。"金宏告诉《中国科学报》记者,"很快, 我们就能够掌握更先进的技术,在国际上叫得响 的技术。

瞄准国际一流,长春光机所确立的五个重点培 育方向分别是:先进无人机技术、星载一体化技术、 共形光学技术、临近空间遥感技术和自由曲面偏轴

这五个重点培育方向同样进展喜人。例如,自 由曲面偏轴光学技术已完成设计与加工,并进行 验证。

其中,一个在研的视仰角为76度的民用项目 已通过验证。76度视仰角意味着人们可以通过该 光学仪器得到分辨率 16 米、幅宽达到 1000 公里的 数据。

该技术很好,但实现难度非常大,无论是设备 的加工制造、装备还是检测,对长春光机所而言都 极具挑战性。但是长春光机所却坚信一点:在不远 的未来,这一技术将领先国际。

解题: 综合优势方能快速前进

实际上,顺利推进"一四五"规划实施并非一件 易事。

首先,研究所面临的是,项目领域新、创新性 强,许多技术是国际封锁、国内没有的,无前人研究 成果可借鉴,研究所只能靠自主创新。

比如紫外/极紫外光学技术,该项目的很多 技术指标要求达到精密机械加工的极限, 难度极 大,科研人员也无经验可借鉴;又如大口径光电设 备制造技术,对于 4m 量级 SiC 的制造技术国内同 样没有先例,长春光机所必须依靠现有技术力量 进行攻关。

其次,困难来自理念上。研究所重点培育方向 除了传统优势领域以外,还涉及小卫星等众多过去 并不占优势的研究领域,有的科研人员心存顾虑。

拥有技术,还需勇气与坚定的信心,方能一一 破解难题。

去年,来自经济、技术、军事等领域的专家对长 春光机所"一四五"规划进行了诊断评估。专家组对 规划给予了高度评价并实事求是地提出了建议。

专家组评估认为,长春光机所的一个定位思 路清晰、目标明确、基础扎实、基本准确;

四个重大突破合理可行,建议加强国际合作 与交流,加强工艺研发与自主设计;

五个重点培育具有发展潜力,建议发挥自身

优势,立足核心竞争力,找准突破口。 "我们的目标始终未变,研究所将依托四项重

大突破和五个重点培育方向,建设四大公共技术平 台和七大专业研发基地,打造多学科综合性研究 所,实现王大珩先生打造中国光学托拉斯的梦想!" 金宏说。 (上图:中科院长春光机所全景鸟瞰图)

全国塑料工业每年需要消耗超过 2000 万吨原油,已影响到我国的能源 安全。而且塑料废弃物不易实现自然降 解和回收利用的缺点也使它成为了环 境杀手。

近日,中国科学院青岛生物能源与 过程研究所(以下简称青岛能源所)生 物基化学品团队在可降解塑料生物合 成领域取得新进展,研究人员利用葡萄 糖、甘油等廉价可再生碳源合成了聚 3- 羟基丙酸(P3HP)。

青岛能源所生物基化学品团队研 究员赵广在接受《中国科学报》记者采 访时透露:"我们开发的聚 3- 羟基丙酸 合成路线产量已达 20 g/L,远高于其他 文献报道的最高产量(1.4 g/L)。

传统塑料危害多

塑料因质轻、综合性能好、易加 工等诸多优点而一直受到社会青睐, 广泛用于工农业及人们生活的各个 方面。目前常用的塑料,包括聚乙烯、 聚氯乙烯、聚丙烯等,都是以石油化 工产品为原料制造的。这些塑料结构 稳定,不能被生物降解,对环境造成 极大危害。

昔日被誉为"白色革命"的塑料, 而今却成为造成世界"白色污染"的 罪魁。如农用塑料地膜的大量使用既 加速了土地的侵蚀,也加速了有毒杀 虫剂的流失,并对流经地域造成更大 的危害

虽然塑料废弃物可以进行回收再 利用,但由于塑料种类众多,需要分类 处理,增加了回收的难度,再利用率不 高。因此,塑料废弃物主要通过填埋和 焚烧的方法处理。

塑料废弃物填埋会大量占用土 地,影响土地的可持续利用,而且塑 料生产过程中使用的化学添加剂(如 重金属化合物)、塑料包装盒上残留 的食品有机物等会产生渗滤液,引起 地下水污染。

废塑料直接进行焚烧处理,不但产 生大量黑烟,导致大量温室气体排入空 气中,还会分解出有毒物质(如二恶英、 氯气等)给环境造成严重的二次污染。

生物合成优势大

一般说来,目前市场上没有完全环 保的塑料制品,只是在塑料中加入一些 成分后,使其相对容易降解。

市场上的环保塑料一般采用无毒 的聚烯烃树脂,在生产过程中加入一定 量的添加剂,如淀粉、改性淀粉或其它 纤维素、光敏剂、生物降解剂等。

虽然这些添加成分使塑料包装物 的稳定性下降,可在自然环境中分解, 但可降解部分仅限于淀粉、纤维素等添 加成分,聚烯烃等树脂成分仍然是无法 降解的,只是以较为微小的形式分散到 环境中,更难回收和处理。从某种意义 上讲,其对环境的潜在污染更甚于传统

青岛能源所生物基化学品团队制 备的可降解塑料聚 3- 羟基丙酸 (P3HP)属于聚羟基脂肪酸酯,这类塑 料可迅速被土壤中的天然微生物直接 降解利用,不会产生任何有害成分。

同时,P3HP通过微生物发酵生 产,不会受到能源危机和石油价格上 升的影响,生产过程也是绿色环保,不 造成污染。

P3HP 是一种 拥有广阔发展前景 的新型可降解塑 料,具有优异的生 物材料性质和机械 性能,比如具有高 机械强度和拉伸强 度、高断裂伸长量 (>300%)、生物降 解性、生物相容性、 无毒及热塑性等。

P3HP 具有广 阔的潜在应用范围。 由于良好的生物相 容性,P3HP可用于 制造医疗器械,尤其 是一些需要植入体 内的器械等。因优异 的机械性能和生物 降解性,它还可用于 制造包装材料、农田 地膜等。

近日,青岛能 源所生物基化学品 团队分别克隆了不 同来源的聚 3- 羟 基丙酸合成所需的 酶基因,在大肠杆 菌中表达纯化了相

关酶并比较它们的催化活性,选择具 有最高活性的酶基因组合构建了两条 合成聚 3- 羟基丙酸的代谢途径,可 利用葡萄糖、甘油等廉价可再生碳源 生产聚 3- 羟基丙酸。

为进一步改善聚 3- 羟基丙酸的材 料性能,研究人员还在其中掺入了3-羟基丁酸单体,使材料的热力学性能和 机械性能得到了明显改善。

环境和经济需求可观

可降解塑料生产当前在全球都处 于起步阶段。可降解塑料按照降解机 理可大致分为光降解塑料、生物降解 塑料和光一生物双降解塑料。其中,光 降解塑料由于价格较高,又只能在光 照下降解,受地理环境、气候制约性很 大,埋地部分不能降解等诸多缺点,最 终将退出历史舞台。

具有完全降解特性的生物降解塑料 和具有光一生物双重降解特性的光/生 物双降解塑料,吸引了世界各国研究人 员的目光,成为了目前主要的研究开发 方向和产业发展方向。

我国每年对生物降解塑料的需求 超过 100 万吨,但实际产量却不足 10 万吨。

青岛能源所生物基化学品团队开 展的生物法合成 P3HP 的研究还刚刚 起步,无法进行工业化生产,但他们相 信 P3HP 作为新型可生物降解塑料具 有巨大的市场潜力。

目前,P3HP生物合成面临的最大 问题就是如何提高产量,降低成本。

导致生物法合成可降解塑料成本 较高的原因一方面来自原料,比如一 吨原料甘油的价格是几千元, 因此该 团队正在尝试利用农林废弃物、秸秆 等原料生成聚 3- 羟基丙酸。

另一方面来自制备技术,如何使 P3HP 的合成路线具有更高的转化效 率也是该团队正在努力攻克的另一个 难题。

|| 动态

中科院高能所加速器部件 首次进入北欧市场

本报讯 近日,随着高功率波导移相器/衰减 器、高功率陶瓷窗等如期交付瑞典隆德大学 MAX 实验室,中科院高能所共计完成了6批次中标的 200 多件瑞典 MAX IV 项目波导系统的制造工作, 历时一年半。这是中科院高能所制造的加速器部件 首次进入北欧市场。

MAX IV 是瑞典正在建造的、具有先进指标的 同步辐射光源。中科院高能所在2011年11月取得 该项目微波产品供应商的资格;2012年2月受邀 参与 MAX IV 项目波导系统招投标,击败 4 家国 际知名微波公司,成功中标。

在交付 MAX 实验室的波导元件当中,诸如 高功率 SiC 干负载、高功率波导移相器 & 衰减器 等微波部件都是从中科院高能所 BEPCII 工程研 发的微波器件基础上改进的,这是中科院高能所 高性能加速器及部件在国际市场上的又一个成功 (潘希)

合肥物质院国家自然科学基金 项目资助名列前茅

本报讯 国家自然科学基金委近日公布了 2013 ¦ 年度集中受理期申报项目的评审结果。截至8月 26 日, 合肥物质科学研究院共有 137 个项目获批 资助,总经费达 7002 万元,取得历史最好成绩。在 中科院研究所中,立项项目数排名第1,批准经费 数排名第2。

今年,合肥物质院在集中接收期间共申报各类 并确认了项目所采购的仪器设备,审查了项目的

项目 479 项, 获批资助 137 项, 资助率达 28.6%; 与 1 去年同期相比,获批项目数增加了7.9%,资助经费 增幅 12.0%, 保持了继 2011 年基金跨越发展后的 连续增长势头。 按项目类型分,本次获资助的项目包括:面上项

目 51 项,青年基金 80 项,联合基金 1 项、重点项目 2 项,优秀青年科学基金项目1项,国际(地区)合作交 流项目 2 项。其中,青年科学基金项目数连续 3 年增 长,占获批项目的58.4%,资助率为34.2%。

此次获资助的项目领域分布广泛。从资助项 目的学科分布看, 获批项目涵盖了除管理科学以 外的所有学部,其中数理科学部 49 项,化学科学 部 21 项,生命科学部 7 项,地球科学部 15 项,工 程与材料科学部 26 项,信息科学部 17 项,医学科 学部两项。

近几年来, 合肥物质院基金工作连续多年实 现稳步增长,反映出该院在学科建设、人才队伍建 设和科研平台建设等方面不断发展的良好态势。

沈阳自动化所 2012 年度修购 项目通过现场验收

本报讯 由中国科学院条件保障与计划财务局 组织举行的 2012 年度修购项目现场验收会近日在 中国科学院沈阳自动化研究所(简称沈阳自动化 所)举行。副所长梁波及条件处、财务处、研究室相 关人员参加了验收会。沈阳自动化所顺利通过现场

验收。 专家组听取了沈阳自动化所修购专项项目的 管理报告、技术报告、财务报告,查看了项目现场 管理、技术和财务档案。

专家组一致认为项目工作小组认真履行职责, 设备采购过程符合政府采购规定,仪器设备达到预 定技术指标,文件档案齐全,经费使用符合有关规 定,建议该项目通过验收。

2012年,沈阳自动化所获批"激光加工测量与 工艺实验系统"、"新型水下潜器设计与仿真平台"2 个项目,并于 2013年3月全部执行完毕。(王庆)

上海光机所高功率激光元器件 中心基础设施项目通过验收

本报讯 近日, 受中科院条件保障与财务局委 托,中科院上海分院基建验收组对上海光学精密机 械研究所 2011 年修缮项目——高功率激光元器件 研究与生产中心基础设施项目进行了验收。

根据验收大纲要求,上海光机所副所长祝如荣 向验收组简要介绍了高功率激光元器件研究与生 产中心基础设施修缮改造项目的情况。

在正式验收过程中,验收组分建安、财务和档 案3个小组对项目进行了验收。其中,建安验收组 还对北区跨河桥、门卫等进行了现场踏验。各专业 验收组分别对现场、档案、财务帐册和审价审计文 件进行了认真仔细地检查并提出了验收意见。验收 组一致同意该项目通过竣工验收。

高功率激光元器件研究与生产中心基础设施项 目是上海光机所 2011 年财政部修购专项项目。项目 建成后,解决了北区出人口通道、道路照明和电力供 应问题,完善了园区安保、园区通讯和园区基础设施 总体配套,提升了园区科研产业生产能力和基础设 施的保障能力,为创新工程、相关科研试验和科研生 产任务的顺利实施提供了可靠的条件保障。(郭康)

∥报告

宁波材料所 饮水和食品安全快速检测

近日,中国军事医学科学院研究员高 志贤作客中科院宁波材料所,并作了一场 题为"饮水和食品安全风险快速检测技术 与装备研究"的学术报告。

高志贤介绍了基于纳米复合材料、分 子印迹聚合物、MIPS-SPR 免疫传感器与 UPT 免疫层析技术等对水及食品中污染 物进行快速筛查及监控方面的最新研究进 展,并系统地阐述了三维仿生光子晶体的 制备及其在生物检测中的应用。高志贤就 突发公共事件和大型活动饮食安全现场保 障谈了自己的看法,指出现行的健康评价 体系、检测技术及设备等需要进一步完善。

高志贤是国家"863"计划环境与健康 领域主题专家、军队处置突发事件应急指 挥机制专家咨询组成员,并担任中国分析 测试协会常务理事、中华预防医学会卫生 检验专业委员副主任委员等职务。支持完 成了国家"863"计划、国家科技支撑计划、 国家自然基金重点项目 40 余项。

广州健康院

成体神经干细胞研究

中科院生物物理研究所研究员王晓 群近日应邀访问中科院广州生物医药与 健康研究院,并作了题为《窥探活体大脑 干细胞》的报告。

王晓群介绍了其研究组在成体神经 干细胞领域的相关工作,并着重介绍了其

首次发现的存在于小鼠胚胎发育期室下层 外区(OSVZ)一种新的神经干细胞(oRG 细胞),该细胞只有基突,且具有单极性形 态,通过不对称分裂进行自我更新和生成 新的神经元。王晓群还就成体神经干细胞 领域的研究现状进行了简单介绍。

王晓群是中组部首批青年"千人计划" 研究员, 主要从事大脑发育和神经干细胞 研究,主持多项科研重大项目,已在《自然》 等杂志上发表多篇具有重要影响的文章。

合肥智能所

硫族化合物的热电性能研究

8月27日,德国马普固体化学物理研 究所潘林博士访问中科院合肥智能所,并 作了题为"硫族化合物的热电性能研究"的 学术报告。

潘林介绍了热电材料的发展历史、工 作原理和热电转换的应用。基于"声子玻 璃一电子晶体"的概念,详细阐述了对 Bi-CuSeO、AgBiSe2、SnBi2Te4 固溶体等基体材 料的可控掺杂来实现热电优值的调节,实 现热电转换效率的大幅提高,并在此基础 上深入细致地介绍了热电材料器件化的制 备方法,以及能量转移和储存器件的应用 前景。同时,潘林向与会科研人员分享了他 做科学研究的一些经历和体会。此外,大家 还就相互关心的问题进行了热烈讨论。

潘林现在德国马普固体化学物理研究 所从事博士后研究工作, 研究领域主要集 中在热电材料与拓扑绝缘体以及能源转化 和存储器件。

(郭康整理)