力

"我就是冲着广西和桂林电子科技大学 对人才的渴求和良好的创新创业环境来 的。

来自西安电子科技大学的长江学者廖 桂生,刚刚成为广西自治区的"八桂学者" 问及来广西"重新创业"的初衷,廖桂生对 《科学时报》作了如上表述。

人才,特别是高层次人才难引、难稳,-直是我国西部地区面临的难题。近日,广西 自治区政府在南宁向该省首批 27 名"八桂 学者"和 31 名特聘专家颁发了聘书。通过实 施"八桂学者"和特聘专家制度,广西的高层 次人才引进难题有望得到破解。

解除高层次人才"短板"

尽管"十一五"以来广西经济持续快 速发展,但仍存在"经济总量小、人均水平 低、经济结构不优"的问题。而要实现把广 西建成西部经济强区的目标,加快科技进 步与创新、抓好人才队伍建设成为重中之

广西自治区党委书记郭声琨曾强调 说:"广西发展,项目重要,资金重要,但人 才最重要。输掉项目、输掉资金,可能会输 掉一时一事;输掉人才,却会输掉根本、输

目前,广西的整体科技实力还比较薄 弱。人才,特别是高层次人才难引、难稳、 紧缺的状况没有得到根本改善。

为此,2010年9月,广西自治区政府出 台《关于加快吸引和培养高层次创新创业人 才的意见》等政策文件,决定实施"八样学 者"和特聘专家制度,重点、优先解决制约厂 西发展的高层次人才"短板"。

据广西自治区人才办介绍,此次设立的 "八桂学者"和特聘专家岗位,主要围绕自治区重点发展的千亿元产业、新 兴产业、现代生产性服务业,以及以重大现实问题为主攻方向的哲学社会 科学研究等四大领域。

"八桂学者"5年可获经费 1350万元

有人曾算了这样一笔账:5年聘期内,每位自然科学类全职"八桂学 者"及其科研团队可从自治区获科研补助经费、税后岗位津贴和设岗单位 的科研配套经费以及安家补贴、专项工作经费等,累计可能超过1350万 而特聘专家,除通过申领课题和项目获资助外,自治区财政和设岗单 位在3年聘期内也将提供140万元左右的资助。

"花香引得百蝶来。"竟聘公告一出,即引来海外及国内知名高校、科 研院所、企业的132位专家学者前来应聘。

首批"八桂学者"中,22人拥有博士学位,其中海外博士8人;博士 生导师14人,国家杰出青年科学基金获得者3人,长江学者特聘教授 1人,中科院"百人计划"人选者4人,国家引进海外高层次人才"千人 计划"入选者 1 人。首批特聘专家中,21 人拥有博士学位,其中海外博 士5人;博士生导师15人,国家杰出青年科学基金获得者3人,长江学 者特聘教授1人。而且50%来自区外和国外,创下了广西高层次人才引

"八桂学者"、特聘专家制度的实施,极大地调动了受聘专家学者的积

极性。 就在聘任仪式前,来自中科院的"八桂学者"陈同斌已经到广西开展

广西自治区的有关官员向记者表示:一个以"八桂学者"为引领、特聘 专家为骨干,加快高层次人才开发的新格局正在广西形成。

竖井通风技术护航 亚洲最长公路隧道

本报讯(记者张行勇)在长大隧道修建工程中,隧道运营通风和防火 是一项技术难题。近日,陕西省交通运输厅在西安召开"秦岭终南山公路 隧道通风竖井设计与施工关键技术的研究"项目成果鉴定会。鉴定委员会 认为,该项目在通风和防火技术方面达到国际先进水平,对长大公路隧道 通风竖井工程建设有应用推广价值

2007年1月,秦岭终南山公路隧道正式建成通车,制约陕南经济发展 的秦岭天堑变通途。该隧道单洞长 18.02 公里,双洞共长 36.04 公里,15 分 钟即可穿越。

作为我国乃至亚洲目前最长的公路隧道,科研人员在秦岭终南山特 长公路隧道的设计、施工、通风、监控、防灾、防排水、运营管理等方面一直 进行科学研究。

项目组在开展现场试验与测试的基础上,对公路隧道通风竖井设 计与施工关键技术问题进行了系统研究,首次实现了单井送排式超大 直径深竖井分瓣式整体结构滑模施工,针对滑模施工过程中出现的技 术问题,提出了质量控制措施和单井送排式超大直径深竖井施工方法 及机械配置 对反共转进提出了切实可行的纠偏措施 实现了快速施

据悉,秦岭终南山公路隧道通风竖井的工程规模和通风控制理论属 国内首创,也是目前世界口径最大、深度最高的竖井通风工程。隧道共设 置三座通风竖井,竖井有效通风直径均在11米左右,其中最大的井深661 米,竖井下方均设大型地下风机厂房。通过竖井抽风和风机送风,时刻保 持隧道内空气畅通、新鲜,特别是在遇到火灾等险情时,还可很快切断事故 点送风,阻止火势蔓延。而且,采用竖井通风技术,不仅可靠、安全,工程造 价和运营管理费用也大大降低。

"刹车"功能受损致大脑异常放电

我科学家揭示癫痫发病新机制

赵佳峰供图

本报讯(通讯员周祎)癫痫病俗称"羊角风"、"羊痫风"。关 于其成因, 医学界公认是由大脑神经元突发性异常放电造成 的。到底是什么导致神经元的放电"刹不住车"?浙江大学医学 院神经科学研究所李晓明课题组的一项研究为此提供了新的 回答。相关论文于12月12日在线发表于国际著名期刊《自 然—神经科学》上

癫痫病是人群中发病率较高的一种疾病。全世界大约有 1%的人口患有癫痫,中国约有一千万患者。目前,经现有的抗癫 痫药物治疗,仍有大约30%的患者不能康复。对于药物不能控 制的癫痫患者,目前多采取手术治疗,但适合手术的患者只占 其中一小部分。因此,寻找新的安全有效的抗癫痫药物成为生 物医学研究的重要目标之一。

大量研究表明, Neuregulin 1/ErbB4 是精神分裂症的易感基 李晓明课题组在研究这对基因的过程中,发现它们对抑制 性神经元兴奋性有调节作用。

"这个发现让我们很兴奋。"李晓明介绍说,大脑皮层神经

元主要由兴奋性神经元和抑制性神经元组成,就像"油门"和 "刹车",双方在正常情况下保持平衡状态。如果"刹车"功能受 损,大脑内兴奋性和抑制性神经环路就会失去平衡,引起大脑 异常放电,导致癫痫发生。

进一步的研究表明,抑制性神经元上的 ErbB4 受体可以影 响神经元的活性。神经调节素 Neuregulin1 通过结合 ErbB4 受 体,增加"刹车"的活性。"如果 ErbB4 受体异常,很可能会导致 '刹车'失灵。"李晓明说。

论文第一作者、课题组成员之一李可心博士介绍说,该研 究不但在基因敲除小鼠实验上进行了验证,还由本论文的共同 作者、浙江大学医学院附属第二医院神经外科主任医师张建明 和朱君明在癫痫患者的组织标本中得到了验证。

"Neuregulin1 和它的受体 ErbB4 可能是癫痫的易感基因。 这不仅为探索癫痫抑制药物的新型有效分子'靶标'提供了研 究方向,还为治疗以神经元兴奋性改变为基础的脑疾病的新药 筛选提供了研究基础。"李晓明告诉《科学时报》。

本报讯 国内首条采用物理法冶炼提取高纯度多晶硅的生

该技术是将冶金级硅在不改变硅的本质状况下,主要利用

产线近日在山西省太原市经济技术开发区建成投产。该技术填

物理方法将杂质移除。生产单位山西纳克太阳能科技公司是一

家集太阳能研发、生产、销售为一体的高新企业。其通过和日本

企业以及中科院合作,将太阳能生产工艺和生产流程进行了根

本改变,形成了真正意义上的"绿色"多晶硅生产。其产品纯度

达 99.999%以上,太阳能转换率达 16.5%~17.5%。 (程春生)

国内首条物理法制硅生产线建成投产

补了国内空白,是光伏产业的一项重大成果。

气象发展"十二五"规划公布

本报讯(见习记者冯丽妃)近日,中国气象局与国 家发改委联合印发了《气象发展规划(2011-2015)》。

该规划特别提出要加强利用云水资源。国家发展 改革委农经司司长高俊才表示: "我国每年有30万 亿从海里和其他地方过来的空中云水资源。但利用率 较低,平均约为20%,西北地区平均利用率不到15%。 今后,我们要加大人工影响天气的力度,留住更多云 水资源。

目前,我国主要通过传统的高炮、火箭等技术催 雨。"十二五"期间,气象局将在此基础上,加大飞机催 区域中心或人工影响天气片区。在技术和机制上实行 创新和转变,把更多的空中云水资源降到地面,缓解 我国水资源短缺问题。

此外,规划中涉及的其他主要发展指标还包括:气 象信息公众覆盖率达到95%以上,公众气象服务满意度 保持在85%以上;灾害天气预警信息提前15~30分钟 发出;24 小时晴雨和暴雨预报准确率分别保持在85% 和 22%以上,温度 24 小时预报准确率达到 70%以上;台 风路径24小时预报误差减小到100公里以内等。

国际计算机视觉算法竞赛揭晓

中科院自动化所团队再获佳绩

本报讯(记者郑金武)近日,2011年国际计算机 视觉算法竞赛结果揭晓,由中科院自动化研究所模式 识别国家重占实验室研究员谭铁牛和博士黄凯奇带 领的智能视频监控研究团队,获得"图像目标检测"项 目冠军、"图像目标分类"项目亚军。这也是该团队继 2010年之后再次问鼎"图像目标检测"冠军。

图像目标检测和图像目标分类是计算机视觉中 的基本科学问题,也是智能视频监控等计算机视觉应 用中的关键技术。为客观评价计算机视觉、模式识别 领域相关算法和最新技术的研究进展,英国牛津大 学、微软剑桥研究院等研究机构从2005年开始,组织

一年一度的计算机视觉相关算法国际公开竞赛。

该竞赛包括图像目标检测、图像目标分类两项 谭铁牛团队在2010年首次参赛时,提出了异构数据 融合机制,突破了之前主流算法的局限,分别获得目 标检测项冠军和目标分类项亚军。

据悉,该团队长期从事智能视觉监控方向研究, 先后得到"973"、"863"和国家自然基金等项目的资 助,发表高水平论文80多篇,授权和申请发明专利 21 项, 获第十二届中国专利优秀奖和国家科技讲步 奖二等奖。相关成果解决了智能视觉监控从理论到应 用的众多关键问题。

河北将实施 12 个重大科技专项

简讯

本报讯 记者近日从河北省科技厅获悉,该省将实施 12个 重大科技专项,以进一步加快创新转化载体建设,提升该省经 济社会发展的核心竞争力。

统计显示,今年1至9月,河北全省规模以上高新技术产 业实现增加值 768.5 亿元, 同比增长 20.1%。 预计 2012 年增幅 将达 25%以上,高新技术企业将达到 750 家。

此次着手实施的 12 个重大科技专项涉及新能源、新一代 信息技术、新药创制、新材料等领域。通过项目实施,有望在一 批重大关键技术方面取得突破,为该省重点产业发展提供科技 支撑,引领全省战略性新兴产业的发展。 (高长安)

国际信息系统大会首次在亚洲举行

本报讯 由国际信息系统协会主办的国际信息系统学会第 32届年会于近日在上海召开。这是该学会首次在亚洲举办年会, 来自 43 个国家的约 1000 名学者及 200 多名业界专家参会。

本次年会的主题为"东方遇见西方:通过有效的信息系统 连接与协作",旨在探讨信息系统和信息技术对全球化的积极 影响以及信息化对构建和谐社会、智慧地球的积极作用,研究 信息技术在东西方社会的最佳管理实践。本次大会包括68场 学术报告会,200 多位学者作了精彩的学术报告。 (黄辛)

小麦和玉米深加工国家工程实验室落户吉林

本报讯 近日,小麦和玉米深加工国家工程实验室获国家发 改委批准建设。这一国家级科研平台将在我国玉米深加工产业 化关键技术创新、新产品开发研究和科技成果的工程化应用等 领域发挥重要作用。

该实验室由吉林农业大学牵头,与河南工业大学、华南理 工大学共同建设。实验室建设期为2年,总投资1.26亿元,其中 吉林农业大学投入 2414 万元。吉林农业大学主要承担玉米深 加工工程实验室的建设任务,研究方向包括玉米高效分离分级 技术、玉米食品品质提升关键技术、玉米加工减损增效关键技 术、高效节能玉米深加工新技术、清洁安全玉米深加工新技术 (李林岩 石明山)

本报讯 科技部日前公布了国家重点基础研究发展("973")

据悉,由河南省国家重点实验室(含培育基地)承担的"钎

甘山 炮花开畅学!

(遭永江)

计划立项目录,河南获资助金额过亿元,居中西部省份前列。

缝欠缺表征方法及形成机理的基础研究"等 12 个项目立项,共

承担的"作物水分高效利用机理与调控的基础研究"项目获资

助 4600 万元; 瓦斯地质与瓦斯治理省部共建国家重点实验室

培育基地承担的"高应力含瓦斯煤岩复合动力灾害受控因素及

防控基础研究"项目获资助 230 万元: 先进耐火材料国家重点

实验室承担的"高温服役条件下耐火材料微结构演化及调控机

本报讯(记者程春生通讯员殷小虎)由中国航 天科技集团长治清华机械厂和中国国电集团平庄 煤业公司联合研制的煤矿可移动式救生舱,近日在

分组成,采用航天保温和密封材料,完全隔绝了舱 内外环境, 并采用了空间站再生室环控生保系统 中微量有害气体检测与去除技术以及制冷新技 术,确保了系统的可靠性和舱内人员的安全性、舒 适性。此次认证应用试验模拟了多种外界高温高 压高湿环境,生存舱温度始终控制在30摄氏度以 下,湿度低于65%。参加试验的8名队员在救生舱 内生存 106 小时,身体各项指标均符合健康要求。

图为工作人员在舱外观测。

煤矿移动式救生舱通过综合试验

山西长治通过中国安标中心的综合防护性能试验。 移动式救生舱由过渡舱、生存舱、设备舱三部

说,按照钱学森提出的第六次产业革命的 沙产业理论,不仅甘肃河西走廊成为甘肃 省的粮仓,内蒙古的赤峰、陕西的玉林、新 疆的和田等治沙重点地区也走出了一条林 茂、粮丰、畜肥、民富的良性循环路子。

潘照东则在发言中强调, 现在在沙区 和草原地区,上了一些项目,打着生态治理 的牌子和旗号套国家的钱和政策, 但走的 并不是科学技术的路线。少采光、多耗水 落后的技术、低下的效益,这些问题依然存 在,有些地区还很严重。

"如果把这些做法都套到第六次产业 革命,都套到沙产业上去,我认为这不是对 钱老理论的尊敬, 而是对钱老理论的亵 渎。"潘照东说。

本次论坛由中国科协办公厅、钱学森 办公室以及农业部农村经济研究中心支 持,中国科学技术出版社和中国国十经济

重庆"打黑局长"受聘北邮兼职教授

河南获过亿元"973"项目资助

金 1.07 亿元

理研究"获资助 410 万元。

本报讯 重庆市公安局局长王立军目前应聘为北京邮电大 学兼职教授,北邮校长方滨兴在聘任仪式上为其颁发聘书。

据悉,王立军除获得"全国公安战线一级英雄模范"、"中国 十大杰出民警"等荣誉外,还是国际法医颅面鉴定协会副主席, 西南政法大学、第三军医大学、重庆大学等高校的兼职教授和 博导,研究专长为国际刑事鉴识、现场心理学、刑事侦查学、法 医学等。此外,他编写著作5部,主持科研课题18项,主持研发 156 项专利,其中发明专利 5 项,并多次在国家级杂志上发表学 术论文。去年11月,王立军与中国工程院院士王正国联手建立 全国首个案事件现场数字重建实验室。 (杨清波)

2011 十大科技新闻评选启动

本报讯 由科技日报社联合中央主流媒体举办的"隆力奇杯 2011年国内国际十大科技新闻评选"活动于 12 月 13 日正式启 动,我国首次空间交会对接成功、屠呦呦获拉斯克奖等30条新

中国科技网开设专题接受读者的投票和推荐,同时主办方 将邀请部分院士专家、科技管理工作者等,最终评选出 2011 年 国内外最有价值和影响力的科技新闻。 (潘锋 剑琨)

脆弱生态区如何发展农业 钱学森第六次产业革命理论专题论坛在京举行

本报讯(记者王卉)人类未来的发展之 路该如何选择? 西方传统的工业化道路难 以解决人口和资源的矛盾,新路应该如何 走?日前在京召开的"钱学森第六次产业革命理论及其现实意义"专题论坛上,与会代 表纷纷表示, 钱学森早已对这个问题给出

了答案。 中国农业大学农学与生物技术学院教 授胡跃高引用美国学者莱斯特·布朗的话 说:"西方的经济模式不仅不适用于中国, 对于也在做着美国梦的其他发展中国家的 30亿人口,也必然不适用。而且,现行的经 济模式对于工业化国家也同样行不通。"

内蒙古社会科学院首席研究员潘照东 认为,钱老的观点凝练得很简单,就是"多 采光、少用水、新技术、高效益",这十余字 指出的是一个适应现代人类发展的产业化

处于荒漠化边缘的甘肃省定西市,一 定程度上正是这样一个发展范例。该市是 我国三大马铃薯集中产区之一, 也是最大 的脱毒种薯生产基地。定西马铃薯在华南

的市场份额已占到70%,在上海、北京也占 市场份额的绝大部分。

定西市纪委书记陈尊峰在论坛上表 示:"定西在改善脆弱生态环境的前提下, 发展马铃薯产业、中药材产业、草畜产业和 沼气,是历史的必然,也恰好印证了钱老第 六次产业革命的理论。"

陈尊峰认为,沙产业理论不仅是防止 土地荒漠化、沙漠化的理论创新,更是对生 态脆弱条件下农业发展的高瞻远瞩。

中国治沙暨沙业学会理事长钱能志

学会沙产业专业委员会承办。