当前位置:科学网首页 > 小柯机器人 >详情
破坏线粒体铜离子分布可抑制白血病干细胞自我更新
作者:小柯机器人 发布时间:2020/5/18 13:18:04

加拿大大学健康网络Aaron D. Schimmer研究小组发现,破坏线粒体铜离子分布能够抑制白血病干细胞的自我更新。相关论文2020年5月15日在线发表于《细胞—干细胞》。

研究人员发现在急性髓细胞白血病(AML)干细胞中线粒体膜间组装(MIA)途径底物的mRNA表达增加。因此,研究人员评估了在AML中抑制该途径的作用。ALR的遗传和化学抑制作用会降低AML的生长和生存能力,破坏LSC的自我更新,并诱导其分化。ALR抑制优先降低其底物COX17(一个线粒体铜离子分子伴侣),而敲低COX17类似于ALR的丢失。
 
抑制ALR和COX17会增加线粒体铜离子水平,进而抑制S-腺苷同型半胱氨酸水解酶(SAHH)并降低S-腺苷甲硫氨酸(SAM)的水平、DNA甲基化和染色质可及性,从而降低白血病干细胞(LSC)活力。这些结果揭示了线粒体铜离子调控LSC表观遗传状态和生存能力的机制。
 
据了解,白血病干细胞(LSC)依赖于氧化代谢,并且对靶向线粒体途径具有不同的敏感性,从而可以保留正常的造血细胞。一些线粒体蛋白通过线粒体膜间组装(MIA)途径在膜间空间折叠。
 
附:英文原文

Title: Disrupting Mitochondrial Copper Distribution Inhibits Leukemic Stem Cell Self-Renewal

Author: Rashim Pal Singh, Danny V. Jeyaraju, Veronique Voisin, Rose Hurren, Changjiang Xu, James R. Hawley, Samir H. Barghout, Dilshad H. Khan, Marcela Gronda, Xiaoming Wang, Yulia Jitkova, David Sharon, Sanduni Liyanagae, Neil MacLean, Ayesh K. Seneviratene, Sara Mirali, Adina Borenstein, Geethu E. Thomas, Joelle Soriano, Elias Orouji, Mark D. Minden, Andrea Arruda, Steven M. Chan, Gary D. Bader, Mathieu Lupien, Aaron D. Schimmer

Issue&Volume: 2020-05-15

Abstract: Leukemic stem cells (LSCs) rely on oxidative metabolism and are differentially sensitiveto targeting mitochondrial pathways, which spares normal hematopoietic cells. A subsetof mitochondrial proteins is folded in the intermembrane space via the mitochondrialintermembrane assembly (MIA) pathway. We found increased mRNA expression of MIA pathwaysubstrates in acute myeloid leukemia (AML) stem cells. Therefore, we evaluated theeffects of inhibiting this pathway in AML. Genetic and chemical inhibition of ALRreduces AML growth and viability, disrupts LSC self-renewal, and induces their differentiation.ALR inhibition preferentially decreases its substrate COX17, a mitochondrial copperchaperone, and knockdown of COX17 phenocopies ALR loss. Inhibiting ALR and COX17 increasesmitochondrial copper levels which in turn inhibit S-adenosylhomocysteine hydrolase(SAHH) and lower levels of S-adenosylmethionine (SAM), DNA methylation, and chromatinaccessibility to lower LSC viability. These results provide insight into mechanismsthrough which mitochondrial copper controls epigenetic status and viability of LSCs.

DOI: 10.1016/j.stem.2020.04.010

Source: https://www.cell.com/cell-stem-cell/fulltext/S1934-5909(20)30149-1

期刊信息

Cell Stem Cell:《细胞—干细胞》,创刊于2007年。隶属于细胞出版社,最新IF:21.464
官方网址:https://www.cell.com/cell-stem-cell/home
投稿链接:https://www.editorialmanager.com/cell-stem-cell/default.aspx