O CHINA SCIENCE DAILY

主办:中国科学院 中国工程院 国家自然科学基金委员会 中国科学技术协会

^{总第} 7103 期

2018年8月9日

国内统一刊号: CN11 - 0084

星期四 今日8版

国家科技领导小组办公室设在科技部,承 担领导小组日常工作, 办公室主任由科技部部 长王志刚兼任。 (柯讯)

组长,国务院副总理刘鹤任副组长,成员为发展

改革委主任何立峰、教育部部长陈宝生、科技部 部长王志刚、工业和信息化部部长苗圩、财政部

部长刘昆、人力资源和社会保障部部长张纪南、

农业农村部部长韩长赋、人民银行行长易纲、国

资委主任肖亚庆、中科院院长白春礼、工程院院 长李晓红、中央军委科学技术委员会主任刘国

治、中国科协党组书记怀进鹏、国务院机关党组

国务院成立国家科技领导小组

成员高雨。

www.sciencenet.cn

新浪微博 http://weibo.com/kexuebao

■本报见习记者 张兆慧

近日,来自美国麻 省理工学院的一个研 究小组表示,由于气候 变化和灌溉农业的发 展,2070年至2100年, 中国的华北平原可能 因为极端热浪而变得 不宜居住,而这样的热 浪对户外工作者而言 甚至可能带来生命危 险。这一研究成果日前 发表于《自然一通讯》。

未来华北平原难 道真将变得不再官居? 相关专家告诉《中国科 学报》记者,该预测结 果仍未可知。

温度异常是人 类活动和自然变率 共同作用的结果

据了解,研究人员 按照现有的温室气体 排放水平,基于高分辨 率区域气候模型模拟 的集合进行预测,结果 显示,气候变化对大规 模的灌溉农业模式有 直接影响,会使得热浪 的强度更高。

研究报告指出,虽 然灌溉可以冷却地表 温度,增强地面空气湿 度,但随着温度升高, 灌溉系统将导致更多 的水汽蒸发,使得北方 平原的空气异常潮湿, 从而提高热浪的强度。 因此,在温室气体排放 没有改变的情况下,本 世纪下半叶,华北平原 可能会遭遇致命热浪。 研究同时表明,大面积 的灌溉农业将湿球温 度直接提高了 0.5 摄

然而,灌溉农业模 式真的对热浪产生了 如此大的影响吗?中国 农业科学院副院长梅

旭荣告诉《中国科学报》记者,灌溉农业模式仅仅改 变了下垫面水汽的供应,热浪主要是由特殊的地形 和气候造成的。"我们观察近二三十年的气候变化, 发现风速呈降低态势,蒸发从而变弱。此外,大气环 流自西向东,到达华北地区时呈下沉气流,温度升 高,外加温室气体的大量排放等,多种因素的融合 导致温度升高。"梅旭荣向记者解释。

此外,中国气象科学研究院气候系统研究所 刘伯奇表示,大气环流是一个连续的整体,其影响 的不仅仅是华北,在世界各地均有不同的表现。而 影响气候的因素除温室气体排放、人类活动等外, 还需要考虑自然变率的作用。

"自然变率是地球系统的内部变化过程,既包 含各种年际和年代际振荡现象,也包含地球轨道参 数变化和太阳常数改变造成的缓变过程,而非人类 干预。"刘伯奇说。

提高人类对气候变化的适应度

该研究显示,在超过35摄氏度"湿球温度"的 高温高湿环境下,人类在无保护情况下无法在户外 存活 6 小时。高湿环境会阻止汗液蒸发,影响人的 散热机能,最终导致器官衰竭。

世界卫生组织曾表示,2030年至2050年间, 与气候变化有关的热应激可能导致全球每年有 3.8 万人死亡。

"根据气候变化和人口差异的极端情况预测, (受极端热浪袭击)每年死亡人数可能达到51795 人。"论文合作者、澳大利亚莫纳什大学副教授郭玉 明(音译)在接受媒体采访时表示。

中国气象科学研究院气候系统研究所副所 长祝从文接受《中国科学报》记者采访时表示: "该论文通过气候模型进行未来气候变化预估, 具有一定的科学性,同时也带给我们一定启迪, 如何提高人类对气候变化的适应度的问题值得 关注。

但同时他指出,这仅仅是基于假设温室气体排 放情景下的气候模型预估。"事实上,自2015年近 200个缔约方在巴黎气候变化大会上一致通过《巴 黎协定》后,中国在节能减排方面做出的努力不容 忽视。未来气候演变究竟如何,还存在很大的不确

而对于人类对气候变化的适应度问题, 祝从文 告诉记者,中国已有学者对此进行研究。中国科学院 大气物理研究所高学杰和国家气候中心的研究人员 合作,曾使用有效温度这一指标,分析过去几十年中 国热舒适度的变化,并对未来有效温度变化进行集 合预估,发现中国人口众多,但分布并不均匀,同时 未来人口总数和分布会发生进一步变化。

为人类活动举起警示牌

该论文通过气候模型预估,指出除非大幅减少 温室气体的排放,否则,在2070年至2100年间,华 北平原的高温高湿天气将会频繁出现。尽管是基于 气候模型进行的预测,但论文指出的潜在危险为人 类活动举起了警示牌。

梅旭荣指出,尽管灌溉农业只是增加热浪发 生概率的原因之一,但如果单从农业灌溉模式 来讲,也可以进行一定程度的改进。"我们可以 全面发展节水灌溉,将传统灌溉转化为滴灌。 梅旭荣说。

此外,针对今年的持续高温天气,祝从文表示, 我国受东亚季风气候影响,而季风气候的特点是显 著的季节变化,夏季高温是每年都会发生的气候现 象,今年只是较往年持续时间稍长而已,在2000年 夏季也曾发生过,公众不必为此恐慌。

"尽管全球变暖是客观存在的事实,但改变不 了季风气候的本质。此外,除却人类自身的适应,通 过国家相关政策调整产能的变化,相信我们有能力 改变论文对未来预估的结果。"祝从文总结道。

相关论文信息: https://www.nature.com/articles/s41467-018-05252-y

科学家揭示全球季风区极端降水变化

本报讯 国务院办公厅 8 月 8 日印发《关于成 立国家科技领导小组的通知》(以下简称《通知》)。

《通知》指出,按照深化党和国家机构改革

国家科技领导小组主要职责为研究、审议

国家科技领导小组由国务院总理李克强任

统一部署,根据议事协调机构调整有关安排和 工作需要,国务院决定将国家科技教育领导小

国家科技发展战略、规划及重大政策;讨论、审

议国家重大科技任务和重大项目;协调国务院

各部门之间及部门与地方之间涉及科技的重大

组调整为国家科技领导小组。

本报讯(记者崔雪芹)8月8日,中国科学院 大气物理研究所周天军团队在《自然一通讯》在 线发表文章,揭示了全球陆地季风区极端降水 随不同全球增温阈值的变化,指出若全球增温 控制在 1.5 摄氏度, 较之 2 摄氏度温升目标,将 能显著减少对"危险"极端降水事件的暴露度。

2015年12月《联合国气候变化框架公约》 缔约方大会通过《巴黎协定》,正式将"2摄氏度 温升目标"纳入大会成果,并提出"力争把温升 目标控制在较工业革命前上升 1.5 摄氏度以 内"。较之2摄氏度温升目标,1.5摄氏度温升 所能够避免的气象灾害风险和减小的影响,成 为迫切需要国际科学界回答的问题。

利用参加第五次耦合模式比较计划 (CMIP5)的多模式气候预估数据,结合不同共享

社会经济路径(SSP)下的人口预估数据,研究团 队探讨了从 1.5 摄氏度到 2 摄氏度、3 摄氏度和 4 摄氏度等不同温升目标情景下,全球季风区极端 降水的变化及其对人口的影响。

结果表明,极端降水对全球增温的响应表 现为两方面,即平均态和变率均增加。因此,强 度极强且影响力高的"危险"极端事件(如"20 年一遇"的极端降水事件)发生频率将显著增 加。这将导致季风区对这类"危险"极端降水事 件的暴露度随温升而增加。

研究表明, 若将全球增温控制在 1.5 摄氏 度,则较之2摄氏度,这类极端降水事件所影响 的季风区面积和人口都将减少大约 20%~40%。 极端事件的"危险"等级越高,1.5 摄氏度较之 2 摄氏度温升目标能够避免的风险越大。因 此,1.5 摄氏度温升目标,较之 2 摄氏度温升 目标,能够显著减少极端降水事件对自然和 人类社会的影响,这对于人口众多且分布密 集的全球季风区尤为重要。基于多种极端降 水研究指标的比较分析表明,这一结论不依 赖于"危险"极端事件的定义方法、RCP8.5和 RCP4.5 两类温室气体排放情景和人口预估 情景等,且具有较高的模式一致性。

该项研究还比较了全球三大季风区极端 降水变化的异同点,发现在各子季风区中,南 部非洲季风区和南亚季风区是受 0.5 摄氏度额 外增温影响最大的敏感地区,这两个地区也是 众所关注的气候脆弱区。

相关论文信息 DOI: 10.1038/s41467-018-05633 - 3

雾霾来源和形成机制研究获新进展

本报讯(记者杨保国)中国科学技术大学地 球和空间科学学院教授沈延安团队与美国加州大 学圣地亚哥分校林莽博士、美国科学院院士 Mark H. Thiemens 等合作,在研究华南地区雾霾的物质 来源和形成机制上取得重要进展。8月6日,相关 研究成果在线发表于美国《国家科学院院刊》。

研究人员首次将放射性硫同位素(35S)与 稳定硫同位素(32S/33S/34S/36S)相结合,以国 家大气环境背景值武夷山监测站为研究点,探 讨华南地区气溶胶物理传输途径和化学形成 机制。研究揭示了雾霾硫酸盐组分存在非常显 著的 33S 和 36S 同位素非质量分馏信号,结果 表明 33S 的异常来源于平流层的光化学反应,

而 36S 的异常组成主要来源于化石燃料或生 物质的燃烧过程。

雾霾主要由硫酸盐、硝酸盐、有机碳和黑 碳等组成,对硫酸盐的稳定硫同位素进行高精 度测定并探索其非质量分馏信号成因,对正确 认识雾霾来源和形成机制具有指导意义。35S 只在高层大气生成,半衰期为87天,因此可有 效地对雾霾来源及其物理传输途径进行示踪。

研究人员通过系统测定华南气溶胶的硫酸 盐、大气中的二氧化硫以及代表性煤的稳定硫 同位素,发现气溶胶硫酸盐 33S 和 36S 的异常组 成与大气中二氧化硫和煤的同位素组成不同。 放射性 35S 分析结果显示,33S 的异常组成与气 团高度的变化密切相关,这说明二次硫酸盐形 成过程中硫循环经历了平流层的光化学反应, 然后沉降到对流层和地表。

另一个重要发现是 36S 异常与 33S 异常 不存在相关性,但 36S 异常与硫氧化率及多种 生物质燃烧示踪物的丰度均呈现强相关性。研 究结果表明,在东亚及北美地区广泛观测到的 气溶胶硫酸盐 36S 异常,主要是由化石燃料或 生物质燃烧直接生成的一次硫酸盐气溶胶造 成的。该研究证明了硫同位素是追踪不同成因 雾霾硫酸盐来源和形成机制的有力手段。

相关论文信息:http://www.pnas.org/content/early/2018/07/31/1803420115

8月7日 呼和洪 特市玉泉区观音庙社区 的孩子们在学习体验 3D 手绘。

暑假期间,该社区 推出暑期红领巾公益课 堂,孩子们在专业技术 人员的指导下免费学习 3D 打印、3D 手绘、VR 体验等特色科技课程, 感受科技的魅力,丰富 暑假生活。

新华社发(丁根厚摄)

百名院士解读习近平科技创新思想 88

高新区要做实做好"两篇文章"

高新区是科技的集聚地,也是创新的孵化 器。看一个高新区是不是有竞争力、发展潜力大 不大,关键是看能不能把"高"和"新"两篇文章做 实做好。高新区要择优引入企业和项目,不能装 进篮子都是"菜"

一《在辽宁考察时的讲话》(2013年8月 28日-31日),《人民日报》2013年9月2日

学习札记

经过20多年发展,国家高新区对经济发展 的贡献逐年提高,高新区已经成为我国局部改 革力度最大、创新环境最优的区域,也成为全国 各地亮丽的城市名片。比如,国家高新区在培育 和发展战略性新兴产业、促进区域经济结构调 整和发展方式转变中,发挥着引领、支撑、辐射、 带动的作用。

当前,在我国实施国家创新驱动发展战略的 新时期, 国家高新区还需要做好以下几项工作: 一是抓住当前的战略机遇,找准高新区发展战略 定位,发挥好高新区的历史使命。二是进一步深 化改革,完善创新政策,充分发挥市场在资源配 置中的决定性作用,更好发挥政府作用,破除体 制机制障碍。三是大力推动大众创业、万众创新, 强化企业在技术创新中的主体地位,夯实创新发 展基础。四是抓住中国经济新常态下的新机遇, ---杨学明 把握好高新区的发展新机会。

杨学明,中国科学院院士、中国科学院大 连化学物理研究所研究员。主要从事气相及 表面化学动力学研究。

融会贯通

当前,我国已经进入深化改革开放、加快转 变经济发展方式、全面建成小康社会的关键时 期,提高自主创新能力、建设创新型国家步入攻 坚阶段,高新技术产业在技术体系、产业形态、 竞争格局等方面均发生了深刻变革。在此背景 下,充分发挥高新区区域自主创新高地、产业创 新核心载体的作用,对于完善国家创新体系、加 快建成创新型国家具有重要意义。

国家高新区作为区域经济转方式、调结构的 核心载体,需要做好又"高"又"新"两篇文章。在新 的发展时期,国家高新区要围绕自身资源禀赋,围 绕产业链细分领域重点突破,培育成为具有国际 竞争力和影响力的产业集群; 要把握全球科技创 新新动向, 瞄准新的技术和新的原创性产业进行 突破,推动企业进行国际创新合作,在全球范围内 有效整合技术、人才、资本等要素;要把科技创新、 产业发展与城市化建设协调推进,建立区域科技 和产业合作机制, 加强高新区和周边区域的产业 关联与融合, 发挥国家高新区在创新驱动发展中 的引领和示范带动辐射作用。

到 2020年, 国家高新区将建设成为自主 创新的战略高地,培育和发展战略性新兴产业 的核心载体,转变发展方式和调整经济结构的 重要引擎,实现创新驱动与科学发展的先行区 域。以"高""新"为特色和方向的国家自主创新 示范区、国家高新区建设,将以更强大的创新 能力服务于创新型国家建设。

(本报记者沈春蕾整理)

逆转脱发? 研究者独家回应:你想多了!

■本报见习记者 程唯珈 记者 甘晓

日前,一条有关新药逆转脱发的"特大好 消息"在朋友圈流传。消息称,美国约翰斯·霍 普金斯大学等机构的研究人员使用一种试验 新药成功逆转了小鼠的脱发现象。网络上,这 条消息已被解读为"治疗脱发的希望"

为此,《中国科学报》记者独家采访了领衔 该研究的该校儿科学教授 Subroto Chatterjee。 他表示,这项研究尚未证实能够逆转任何类型 的人类脱发——包括中国读者普遍关注的脂 溢性脱发,药物还有待在人体上测试。

这项研究近日发表在期刊《科学报告》上。

源于心脏病和儿科学

心脏病、儿科学,这两个关键词正是"逆转 脱发新药"研究的起源。Chatterjee 是一名儿科 学教授,供职于约翰斯·霍普金斯大学鞘脂信 号与血管生物学实验室。

"动脉粥样硬化性心脏病开始于生命早 期,儿科心脏病学包括研究和治愈儿童的这种 疾病。"Chatterjee 告诉《中国科学报》记者, "2014年起,我们实验室开始关注研发治疗心 脏病的新药。

胆固醇从体内产生被运输到血管,并在血 管里长期堆积,使动脉弹性降低,血管变窄、变 硬,减少了流向心脏和大脑的血液——导致动 脉粥样硬化性心脏病的这一直接原因早已成 为共识。如何降低甚至消除血管中的胆固醇,

是这一领域新药研发的关键问题。

Chatterjee 团队将研究目标锁定在运送胆 固醇的一类物质"鞘糖脂(GSL)"上。如果能够 降低这类物质的水平, 胆固醇的转移缺乏载 体,它们便无法到达血管。为抑制鞘糖脂的产 生,研究人员看中了 D-PDMP。"D-PDMP作 用于体内合成鞘糖脂的两种酶——'葡萄糖苷 神经酰胺合酶'和'乳糖苷神经酰胺合成酶'。' Chatterjee 向《中国科学报》记者介绍。

2014年, Chatterjee 团队在小鼠等动物实验 中验证了他们的猜想,D-PDMP 抑制了鞘糖脂 合成,改善了实验动物动脉粥样硬化的程度。这 项研究在心血管类学术期刊《循环》上刊登。

"老"药新发现

取得上述成果后, Chatterjee 团队继续围 绕 D-PDMP 开展相关研究。在一次高脂饮食 小鼠实验中,研究人员看到,喂食高脂饮食的 小鼠存在脱毛和皮肤损伤的现象, 而服用 D-PDMP 后上述现象似乎得到逆转。

为深入研究 D-PDMP 与脱毛和皮肤损伤 的关联,他们设计了完整实验。Chatterjee 和同 事对一组小鼠进行了基因改造,使其患上动脉 粥样硬化,给这组小鼠喂食高脂肪和高胆固醇 的饮食,第二组小鼠接受标准食物。所有小鼠

从12周龄至20周开始喂食。 研究发现,与喂食标准食物的小鼠相比, 喂食该西方饮食的小鼠出现了脱毛,形成了皮 肤损伤并且毛色变白。当小鼠被继续喂食这类 饮食到36周时上述症状变得更加严重,75%

的小鼠有脱发和多处皮肤病变。 同时,在20至36周龄时,两组小鼠接受

不同量的 D-PDMP 治疗。结果显示,被喂食高 脂饮食而同时接受 D-PDMP 的小鼠开始重新 长毛,并恢复了毛色,而其皮肤炎症也有所减 轻。"乳糖神经酰胺是一种促炎性化合物,是 D-PDMP 的靶点之一,高脂饮食导致的皮肤 炎症源于此。"Chatterjee 说。

毫无疑问,这项研究揭示了作为"老药"的 D-PDMP的新作用。正如 Chatterjee 所言:"这 是一个美妙的意外发现。

尚未证实对脂溢性脱发有效

不过,令 Chatterjee 更意外的是,这项发现 在远在地球另一边的中国读者中走红。

对此, Chatterjee 表示:"该药物尚未在人 类身上进行有关任何种类脱发的药效测验, 包括中国读者关心的脂溢性脱发, 而且目前 没有证据表明该化合物对人类是安全的。"未 来,他将带领团队继续针对秃头症、牛皮癣、 糖尿病和白癜风导致的脱发进行效果测试, 同时也将围绕因整形手术、打斗烧伤等产生 的疤痕开展研究。

"坦率地说,我们也希望获得额外的经费,进 一步探索 D-PDMP 这种药物在多种皮肤和头

发疾病中的用途。"Chatterjee 表示,期待与投资 于脂溢性脱发研究的中国机构和制药公司合作。 相关论文信息: 10.1038/s41598-018-28663-9