|| 动态

防腐剂可融入 细胞表观基因组

本报讯 一项新研究表明,食品防腐剂苯甲酸钠 能通过培养细胞融入其表观基因组——基因组中调 控基因表达的一系列标记物。该研究结果提出了-种能将膳食成分整合到细胞内的潜在机制。不过,在 食用苯甲酸钠的生物体内能否检测到类似结果仍待 进一步研究。

越来越多的证据表明,饮食不仅能影响人们 的身体健康和预期寿命,还可能有助于预防特定 疾病,如肥胖、糖尿病、癌症和精神疾病。不过,饮 食对人体生理机能的影响机制尚不明确。实现细 胞功能修饰的一种潜在方式是通过表观遗传进行 调控的

美国伊利诺伊州芝加哥大学的 Yingming Zhao 及同事运用蛋白质组学和生物化学方法,在体外培 养的细胞中发现了赖氨酸苯甲酰化这种新型组蛋白 翻译后修饰。在8月28日在线发表于《自然—通讯》 的一项报告中,研究人员发现,这种组蛋白标记的沉 积会影响细胞的基因表达, 从而影响各种代谢相关 通路,如胰岛素的分泌。

研究者认为, 苯甲酸钠是赖氨酸苯甲酰化修饰 底物的一大来源, 且苯甲酸钠能促进这种组蛋白标

相关论文信息: DOI: 10.1038/s41467-018-05567-w

德研究显示 远程医疗有助救治心脏病患者

新华社电 德国柏林沙里泰大学医院近日发布 的一项研究显示,远程医疗有助救治心脏病患者,且 对城市和农村患者均适用。

这项耗时 5 年的研究覆盖 1500 多名心脏病患 者,其中半数接受远程医疗,半数接受传统治疗。远 程医疗是指患者家中装有测量血压及体重等指标的 仪器,测量数据通过网络自动传输至沙里泰大学医 院远程医疗中心,供医护人员实时进行评估并给出 相关用药或治疗建议。研究旨在验证远程医疗能否 帮助延长患者生命,并弥合城乡医疗资源的结构性

结果显示,接受远程医疗的患者每年因疾病突 发入院花费的时间平均为17.8天,对照组为24.2 天。在心脏衰竭患者中,远程医疗组每年死亡率为 8%,对照组死亡率为11%。此外,无论患者居住在 城市或农村,对研究结果没有影响。

沙里泰大学医院医务院长乌尔里希·弗赖说: "远程医疗既为病人提供了治疗服务,同时也帮助 了农村地区的家庭医生。研究结果证明,远程医疗 能够不受地域限制,确保提供给患者的医疗质

德国目前约有 180 万慢性心衰患者,每年约有 30 万新增病例。心衰已成为德国人过去十年住院的 最主要原因之一。

归去来兮: 应化所人才的"流"与"留"

(上接第1版)

如今,随着项目研究员、产业研究员的设立,应 化所的评价体系让门永锋曾经面临的评价尴尬不复

"近年来,我们采取了更多元化的评价体制,引 人更客观公正的评价, 比如外界对学术成果的评价 "衣卓说。

基础研究以同行评价为主,着重评价成果的科 学价值;应用研究由用户和专家等第三方评价,着重 评价目标完成情况、成果转化情况及技术成果突破 性和带动性;产业化开发由市场和用户评价,着重评 价对产业发展的实质贡献。

基于不同类型科研活动的特点所建立的科技考 核评价体制,让不同类型的科研活动都有了"量体裁 衣"的评价标准,每个人的价值都得到了最大程度的 尊重。

不仅如此,在通过引进人才背景分析、国外宣讲 等方法吸引海外留学人才归国的同时, 应化所从来 没有放松过自身人才的培养。

在东北大环境对引进高端人才吸引力不足的情 况下,应化所博士、硕士招生质量一度受到影响。可 应化所的科研人员却有"不论你从哪里来,应化所都 将送你向科研高峰去"的自信。

如今,经过几十年经验积累,应化所的人才培养 体系愈发完备,不仅可以通过国家公派留学、中科院 的留学计划为青年学子提供成长平台, 更以所为基 础启动了独具特色的留学计划——课题组、实验室 每年可选派3到5人赴国外留学。

教有所获,学有所得。

大概正是因为有了这些处处为人才成长、进步 着想的制度保障,记者才从应化所的科研人员身上 感受到了浮躁时代难能可贵的从容与平和。这份平 静安宁,包裹着"任尔东西南北风,我自岿然不动"的 淡定外衣,守护着应化人内心对科研事业"安、专、 迷"的赤诚内核。

科学家揭示麻雀因何"黏人"

基因变异使颅骨及食性产生变化

本报讯 只要有人的地方就有麻雀。不过, 尽管它们有着带有暗示性的物种名称— 麻雀,但这种鸟类并没有被正式驯化。除了南极 洲,在每个大洲都能发现这种大胆、小型、灰褐色 的鸟类。它们在城市周围跳跃,在人行道上啄食 剩余的面包屑,有时甚至还会赶走当地的鸟类。 如今,一项新的研究揭示了这些无处不在的小鸟 是如何适应与人类生活在一起的——自然选择 的进化过程可能有利于基因的变异,进而改变了 它们的颅骨形状,并使得麻雀能够消化淀粉,这 与家养的动物类似,例如狗。

麻雀与人类的友好行为具有传奇色彩,这 在《圣经》、早期的中国诗歌和杰弗里·乔叟的 《坎特伯雷故事集》中都有提及。但是没有人真 正知道是什么使它们有别于麻雀家族的其他 野生成员,后者在人类周围很容易受到惊吓。

为了寻找一种基因上的解释,挪威奥斯陆 大学进化生物学家 Mark Ravinet 和他的同事 在欧洲和中东的一些地方捕捉了大量麻雀。研 究人员设置了薄雾网。这是一种长长的、如波 浪般翻滚的网丝,在鸟类飞进去后,能够不加

在这项研究中,科学家测量并标记了这些 麻雀,并且提取了血液样本,然后释放了它们。 研究小组共收集了 4 种主要欧亚麻雀的信 息——46 只家麻雀、43 只西班牙麻雀、31 只意 大利麻雀和 19 只大麻雀。

回到实验室后,研究人员对这些麻雀的脱氧 核糖核酸(DNA)进行了测序。当将家麻雀同与 其最密切相关的野生表亲大麻雀的基因序列进 行比较后,研究人员发现,自从这两个物种分离 以后,许多地区家麻雀的基因组似乎经历了阳性 选择,这意味着在某些地方发生的基因变异能够 帮助鸟类在人类身边茁壮成长。

Ravinet 回忆说, 当他一看到这些结果,便 在自己的办公室里跳来跳去。但他说,在将"所 有的计算结果检查 3 次"之前,他没有将其告 诉任何人。

在鸟类 DNA 中,有关阳性选择的最显著 标志是在一个有两个已知基因的区域被发现 的:一个基因与麻雀头骨发育有关,另一个基 因则能够帮助制造淀粉酶,后者有助于人类、 狗和其他动物分解淀粉。

该研究小组在8月出版的英国《皇家学会 学报 b 卷》上报告了这一研究成果。他们认为, 对这两种基因的改变可能有助于家麻雀食用 人类种植的食物。

Ravinet 指出,家麻雀可以携带更多拷贝或 一个不同拷贝的头骨形状基因和淀粉酶基因。 下一步,他的团队计划更仔细地研究这两种基 因的变异,因为目前还不清楚这些基因是如何 改变鸟类外表和行为的。Ravinet 说,另一个步 骤是检查麻雀的饮食,看看是否有任何针对颅 骨的改变增加了咬合力,这将帮助鸟类咀嚼那 些在人类农场中散布的更硬的种子。

新研究还表明,在大约 1.1 万年前,即新石 器时代的初期——当时农业首次在中东地区发

家麻雀与人类的亲密关系可能改变了它们的 基因, 使其拥有更大的喙和对淀粉类食物的耐受 性。 图片来源:Misja Smits/Minden Pictures

展起来一家麻雀和大麻雀就开始彼此分化了。 在澳大利亚悉尼的麦夸里大学研究麻雀 的进化生物学家 Samuel Andrew 说,这项工作 对于鸟类研究人员来说是一个激动人心的新 阶段,它可以回答许多关于麻雀物种如何分化 以适应其不同生存环境的问题。但是他和 Ravinet 一致认为,在最初的分析中,肯定会错 过其他一些可能会发生变化的基因,它们也帮 助鸟类"利用"了人类。

"如果你住在一个大城市,你周围的动物 要比你想象的多得多。"Ravinet说,"它们有一 段历史和一个故事要讲。我们已经改变了它们 的历史。我认为这是一件相当深刻的事情。

相关论文信息:DOI: 10.1098/rspb.2018.1246

■ 科学此刻 ■

胖人难减肥 分子在作怪

许多国家的肥胖率大幅上升:现在世界上超 重的人比体重过轻的人多得多。其中一个原因与 人体对自身脂肪储存的反应有关,它会启动一系 列阻碍代谢过程的分子活动,而代谢过程通常会

8月22日发表在《科学—转化医学》上的一 项新研究提供了这一过程如何发生的细节,对胖 人减肥难的原因提供了新的见解。它还提出了一 种针对大脑而非腹部肥胖的潜在疗法。 科学家已经知道,一种名为"瘦素"的激素在

调节人类饮食方面起着重要作用。这种由脂肪细 胞产生的分子会与下丘脑进行交流,该脑区在人 们能量储备饱和时控制着饥饿感 然而,当体重增加时,身体对瘦素的敏感度

就会降低,想要减肥就变得越来越难。换言之,体 重增加会愈演愈烈。 在一项高脂肪饮食导致小鼠肥胖的实验中

一个国际团队发现,肥胖会增加基质金属蛋白酶 2(MMP-2)的活性。通过使用蛋白质印迹分析

极光"表亲"是全新天体现象

图片来源:Krista Trinder

脂肪让大脑对缩小胃口的荷尔蒙不敏感

技术分离和鉴定组织样本中的所有蛋白质,作者 发现 MMP-2 分裂了下丘脑瘦素受体的一部分, 削弱了该激素的信号传递和抑制食欲的能力。

该研究还发现,通过基因沉默技术使 MMP-2 失去功能, 可减缓肥胖小鼠体重增加, 防止瘦素受体分裂。

相反, 在同一大脑区域传递 MMP-2 则会 促进体重增加及分裂瘦素受体。

"'瘦素抗性'的概念在这个领域众所周知。 以色列特拉维夫大学细胞生物学家、该论文共同 作者 Dinorah Friedmann-Morvinski 说,"我们的

本报讯 极光——那些照亮高纬度天空的

明亮彩色光波,有一个叫作"强热散发速度增

强"(STEVE)的低纬度"表亲"。科学家在一项

新研究中报告称,公民科学家发现的天空中这

种炫目的紫色与白色相间的带状物实际上是

研究人员分析了2008年3月在加拿大东部

观测到的天空辉光。他们使用了来自全天照

相机阵列和测量带电粒子的卫星收集的数

据。研究人员假设,如果 STEVE 与传统极光

的形成方式相同,那么在看到 STEVE 时,卫

星数据应该会记录带电粒子如电子或离子数

为了了解 STEVE 是否符合极光的定义,

一种全新的空间现象。

制,这会损害随后的瘦素信号级联反应。"

Friedmann-Morvinski 和该研究通讯作者、 美国加州大学圣迭戈分校生物学家 Rafi Mazor 及同事还发现,在实验室培养皿中用炎症化合物 处理下丘脑细胞会增加 MMP-2 基因的表达,这

表明肥胖的最初"原因"是炎症。 此前的研究也支持这一观点,即高脂肪、高 热量的饮食会导致下丘脑慢性炎症,随着时间的 推移,这可能会导致 MMP-2 的产生。(冯维维)

相关论文信息:https://www.scientificamerican. com/article/a-molecular-reason-why-obese-pe onle-have-trouble-losing-weight/

这是因为极光是由地球大气层的带电粒子

撞击原子和分子导致其发光形成的。但研究团

队在日前发表于《地球物理研究通讯》的报告中

称,当天空中出现 STEVE 时,低能量电子和质

子的相对数量仅略微增加。该团队写道,这一

出人意料的结果意味着,STEVE 是由不同机制

是如何产生的,其中一种理论是低能量质子可

能在加热上层大气,这可能与这种天空中的辉

目前,科学家尚不确定 STEVE 独特的光

相关论文信息:DOI:10.1126/science.aav1777

(冯维维)

所形成的一种"明确不同"的现象。

更"磨人"的是 2014 年加速器隧道土建发生 的一次意外。这年4月,连续几天的大暴雨让直 线加速器隧道严重渗水。要彻底解决渗水问题, 必须在直线加速器隧道外再建造一层防水隧 道。这让十建工期延误了一年多,设备安装进度 也相应延误。

意外发生后,工程经理部决定,向国家承诺的 工程竣工日期"后墙不倒",立即开始将散裂中子 源通用设备的安装与土建工程交叉并行施工,先 在地面大厅安装调试原定在隧道里安装测试老练 的设备,待隧道完工后,再移到隧道重新安装。这 大大增加了安装和调试的工作量和难度。

经过几百个日夜,工程团队赶回了工期。"连 大年夜我们都是在隧道里度过的。"回忆起那段 日子,傅世年的语气中满是自豪。

2017年底,散裂中子源国际顾问委员会年 度会议上,外国专家感叹散裂中子源工程建设的 "中国速度": "难以想象你们在短短的一年完成 了如此大量的工作。

技术创新打造"中国方案"

工程是挑战,技术也是挑战。

快循环同步加速器遇到了新的技术难题 "当时,我国还没有研制过快循环同步加速器的 25 赫兹交流磁铁。我们向美国、日本研究所的专 家请教,但他们只懂科学设计,关键技术掌握在 国外大公司手中,不能告诉我们。"傅世年说。

于是,科研人员与工厂技师咬紧牙关、联

的磁铁。研发团队还提出了谐振电源的谐波补 偿方法,解决了多台磁铁之间的磁场同步问 题,其效果优于日本散裂中子源。 不仅如此,陈和生介绍,散裂中子源的"眼

合攻关,经过无数次失败后,终于研制出合格

——中子探测器的核心技术也曾由外国掌 握,经过攻关,科研人员研发出拥有自主知识产 权的探测器,各项性能达到国际一流水平

同样遇到技术挑战的还有靶站。"中子工厂" 生产中子的关键在于"打靶",靶打得好不好直接 决定了工厂的生产效率和质量。"当时,这样的靶站设计在国内几乎是'零经验'。"中国散裂中 子源实验分总体副主任梁天骄告诉《中国科学 报》记者。

从 2004 年梁天骄加入这个团队后, 他亲历 了靶站设计方案的四次大调整。直到2010年,靶 站的物理设计方案基本确定,最终采用扁平包钽 钨片靶,提高有效中子产生效率。

2017年8月28日10点56分18秒,中国 散裂中子源成功打靶并输出了第一束中子,中国 人从此拥有了自己的散裂中子源。

如今,中国散裂中子源顺利通过国家验收, 但他们并没有打算停下来。"中国散裂中子源将 不断完善和改进装置性能,尽快启动后续谱仪建 设和功率升级工作,扩大用户群体。"陈和生说。

他们计划提升中子生产能力、完善样品环 境、培养更多用户、建设更多谱仪……在他们心

中,中国散裂中子源才刚刚迈出第一步。

环球科技参考

中科院兰州文献情报中心供稿

英国最大极地科考船下水

近日,英国自然环境研究理事会(NERC) 发布消息称,英国最先进的极地研究考察船于 7月14日下海,这条极地科考船 RRS Sir David Attenborough 的下海是全球极地研究船 建造的一个里程碑。

英国新建的极地科考船 "RRS Sir David Attenborough"在 Cammell Laird 船厂进入默西 河举行下水仪式,之后将进入下一阶段的建造 工作,预计 2019 年投入运营。该船由 NERC 委 托,由罗尔斯·罗伊斯公司设计,长达 129.6米, 吃水深度 7.5 米,排水量为 14098 吨,可续航 60 天,破冰厚度达 1.5 米。该船是英国政府近 30 年 来建造的最大、最先进的极地科考船,投资金额 达 2 亿英镑,完成之后将交付英国南极调查局负 责运营。这艘新研究船是政府极地基础设施投资 计划的一部分,该计划旨在使英国处于世界南极 和北极研究的领先地位。 (牛艺博)

新研究分析 影响美国气候变化立法的游说支出

近日,《气候变化》期刊发表文章指出,

2000~2016年,游说者花费了 20 多亿美元来影 响美国国会关于气候的相关立法,电力公用事 业、化石燃料公司和运输公司在气候变化游说 方面的花费最大。

游说被认为是气候变化立法成功或失败 的重要因素。气候游说是一项大型商业活动。 美国德雷塞尔大学的研究人员估算了 2000~2016年影响美国国会关于气候变化立法 相关的游说支出。结果显示,2000~2016年,游说 者花费了20多亿美元来影响美国国会关于气候 的相关立法,占游说总支出的3.9%。根据提议立 法和国会听证会的时间不同,在气候变化游说上 的花费也明显不同。气候游说在2000~2006年只 花费了约5000万美元,但在随后几年花费显著 增加,2009年达到3.62亿美元,2010年略微降 低,2011年之后则急剧减少。气候游说支出的绝 大部分来自受气候立法影响很大的部门。 2000~2016年,在气候变化游说方面花费最多的 部门是电力公用事业部门,为5.54亿美元。在此 期间,化石燃料部门花费了3.7亿美元,运输部门 花费了 2.52 亿美元。环保组织和可再生能源部门 的游说支出则相形见绌,各自仅占气候游说支出 的 3%左右。游说支出水平似乎与重要气候立法 的引人和通过概率有关。未来的研究应侧重于将

气候立法的特定立场与公司层面的游说支出联 系起来。 (廖琴)

低碳车辆融入大众消费市场 需依赖各国政府采取积极措施

近日,研究显示,低碳车辆融入大众消费 市场将依赖各国政府采取积极的政策措施。

全球范围内对私家车的新兴需求抵消了 部分能源相关温室气体减排的努力,低碳电力 或氢能驱动的车辆提供了传统化石燃料技术 的替代方案。尽管政府和汽车制造商做出了雄 心勃勃的承诺和投资,但这些低碳车辆最终是 否能够进入大众消费市场,这一点并不明确。

来自奥地利国际应用系统分析研究所、美 国田纳西大学、英国东安格利亚大学廷德尔气 候变化研究中心等机构的研究人员将消费者 偏好,特别是个人的非财务偏好纳入考虑,综 合使用多个全球能源经济模型分析了到 2050 年低碳车辆融入大众消费市场的潜力。分析结 果表明,各国政府在区域层面的近中期战略、 清洁燃料价格、充电设施建设等针对车辆购买 者的各种政策措施对于推动清洁技术的广泛 采用是必要的,并且低碳车辆融入大众消费市 场可能需要长达20年的时间。该研究结果还显 示,仅靠碳定价不足以将低碳车辆融入大众消 费市场,尽管它可能在确保交通行业能源脱碳 方面起到支撑作用。 (董利苹)

非维管植物可能影响大尺度水文循环

近日,《自然一地球科学》发表文章指出,非 维管植物可能会对全球降雨的截留和蒸发产生 重大影响。植物的截流是陆地水文循环的重要 组成部分。非维管植物(地衣和苔藓)已被证明 可以截留大量的降雨,这可能会影响区域到大 陆尺度的水文循环和气候。然而,非维管植物 对降雨截留的直接测量仅限于局部尺度,这使 得推断其在全球层面的影响存在困难

来自瑞典斯德哥尔摩大学、美国佐治亚南方 大学和德国马克斯普朗克生物地球化学研究所的 科研人员,使用基于过程的数值模式和观测数据, 评估比较非维管植物对全球降雨截留的贡献。研 究结果表明,模拟的植物平均全球蓄水量(包括非 维管植物在内)为 2.7 mm,与野外观测结果一致。 当包括非维管植物时,来自森林冠层和土壤表面 的自由水的总蒸发量增加了61%,导致全球降雨 截留通量为地面蒸发通量的22%。 (裴惠娟)