中国科学教

"一张网"铺开,智能天气预报来了

■本报见习记者 赵睿 记者 潘希

从现在开始,无论你身处何地,只要打开 电脑或者手机 APP, 通过卫星定位就可以显 示出你所在位置的最新天气预报。

这样的天气预报可以提供降雨、风、温 度、湿度、云量、能见度等精准气象服务,打破 "预报有雨很准,但雨没下到我这里"的尴尬 现象。你还可以清楚地知道自己所在的位置 "20分钟后会下小雨、50分钟后雨会停"

事实上,这种名为智能网格化预报的技术, 通过中国气象局近3年的研发已经投入业务化 运行。北京、天津、上海、福建、广东、海南及陕西 等7省市率先正式发布智能网格预报。

精细:"局部有雨"将成过去时

"过去,整个北京的天气预报只是用南郊 观象台这一个点的气温、降水等来代表,有时 也会听到'局地暴雨'等表述,但局地到底在 何地?就很不明确了。"在国家气象中心预报 系统开放实验室主任薛峰看来,通过开展网 格化预报,今后北京的天气可以精细地反映 在整座城市每个不同的网格之中。

就像地球上的经纬网一样, 气象专家把 中国以及每个城市所在的区域分解成许多个 5公里×5公里网格,每个网格中的天气情况 也会有所差异。

薛峰告诉《中国科学报》记者:"目前我国 陆面大约有38万个5公里×5公里小网格, 海上约有 16 万个 10 公里×10 公里大网格, 网格的覆盖率已达 100%。网格化预报就是针 对每一个这样的网格开展的。

智能网格预报是目前国际上精细化气象 预报的发展趋势,按照中国气象局的计划,年 底前,我国气象预报服务统一数据源的"一张 网"网格预报业务将正式运行。这张网的空间 分辨率达5公里×5公里,时间上可实现逐3 小时发布未来 10 天的天气预报。

目前,部分省份已能制作发布时空分辨率 更高的气象预报。例如,广东未来 10 天温度、 风、降水量、云量等陆地预报要素分辨率可达 2.5 公里;陕西智能网格预报的空间分辨率也达 到了3公里,未来两天预报可逐小时发布。

中国气象局预报与网络司天气处处长张志 刚介绍,全国各省份的智能网格预报业务正在 顺利推进,将于今年底全部实现业务化运行。

"气象预报的时空分辨率提高了,但我们 没有以牺牲准确率为代价换取精细化水平的 提升。在我国气象部门制定的目标下,预报的 内容将会更精细、更准确。"薛峰说。

智能:云平台实现数据共享

长期以来,海量数据传输都是气象业务 的难点问题, 高分辨率智能网格需要高分辨

率区域数值预报模式支撑。为此,中国气象局 在上海建立了一个数值预报云,实现了国家 级、北京、上海、广东四套区域模式的云端快

"通过数值预报云和全国综合气象信息 共享平台(CIMISS)实现了国、省两级数据的 打通。"薛峰介绍,国家级气象部门会首先发 布全国智能网格预报指导产品并在全国共 享,各省级气象部门基于自己的预报方法,同 时参考国家级预报制作本地的网格预报,并 分享给国家级, 最终拼成不断滚动更新的智 能网格预报"一张网"。

数值预报和大数据应用是智能网格预报 业务发展的新动能,人工智能技术也为智能 网格预报的大数据传输、快速分享提供了新 的解决方案,使气象预报实时同步、协同一致

基于数值预报和大数据应用,结合智能 化的预报算法,天气预报业务也在飞速发 展。"我们现在的预报员不再是看图说话,而 是基于大数据的分析和挖掘,对各种不同数 据进行综合研判,最终形成一种智能化的预 报。"薛峰说,"气象预报员的价值被重新定

服务:科学"格子"网住多样需求

"北京的天气预报比较难报,有时候上午

天很好,午后产生对流性降水,老百姓查看天 气时却还是晴。所以我们要根据天气的实时 变化去更新,努力提高预报的服务能力。"薛

如何与公众需求相契合是智能网格预报 业务要解决的问题。智能网格预报的初步目 标是把全国分成5公里×5公里的网格,在这 个基础上每隔1小时更新一次预报,如果遇 到重大天气过程,更新的频率还会加快。

此外,网格预报还有助于预报员开展灾 害性天气影响预报, 为政府部署灾前防御措 施、抢险措施及灾后重建等工作,提供更为科 学、合理、及时的决策依据,将气象灾害可能 造成的损失降到最低。

中国气象局副局长矫梅燕提出,今年全 国智能网格气象预报业务化运行的目标是实 现全国预报和服务统一数据源的"一张网"正 式运行,全国主要气象服务产品与"一张网" 统一数据源对接,全国智能气象预报协同一 致、高质量、权威发布。

矫梅燕认为,智能网格气象预报系统在 提升气象业务现代化、提高天气预报准确率 和精细化水平等方面都起了重要支撑作用。 她说:"我们提出精细化格点预报要向网格 预报转变,不仅仅是概念的更替,更是技术 体系、业务流程的全新变革。希望能为气象 业务现代化建设、为智慧气象的发展作出应 有贡献。

■发现·进展

复旦大学

发现铁硒超导体"扭曲" 的磁激发结构

本报讯(记者黄辛见习记者朱泰来)复旦大学物理系 赵俊课题组发现新型铁基超导体 Li0.8Fe0.2ODFeSe 中存 在扭曲的磁激发结构,为理解高温超导机理提供了新的线 索。相关研究论文近日发表于《自然一通讯》。

超导电性指的是材料在低温下电阻完全消失的现象。 这一现象的发现已有超过百年的历史。大多数传统超导体 的超导转变温度较低(一般低于 40K),高温超导电性的形 成机理仍然是凝聚态物理研究的重要难题之一。铁基超导 体可以粗略地分成铁砷和铁硒族两大类,其中铁硒类超导 体因其奇异的磁性、向列性和超导特性成为了目前最受瞩

Li0.8Fe0.2ODFeSe(超导转变温度为41K)是新发现的 电子掺杂铁硒类超导体。赵俊课题组最近用水热离子交换 的方法成功生长了大尺度、高质量的 Li0.8Fe0.2ODFeSe 单 晶,并用中子散射技术对其进行了磁激发谱的测量。结果 发现该体系在布里渊区中以(π, π)为中心形成了罕见的 环形自旋共振峰,其散射波矢与相邻的两个布里渊区边界 上的电子费米面之间的散射吻合。

随着能量的升高,磁激发出现了由向外色散到向内色 散的转变,使得激发谱的色散关系呈现扭曲形状,并且在 拐点(60meV)能量之上和之下自旋激发谱的动量结构旋 转了90度。这些结果首次完整揭示了电子掺杂铁硒类超 导体在动量—能量空间中的磁激发结构。

揭示人体炎症发生机制

据新华社电近日,中国科学技术大学周荣斌、江维研 究组与王均研究组、白丽研究组及中山大学崔隽研究组 合作,研究揭示了胞内氯离子通道蛋白 CLICs 家族在 NLRP3 炎症小体活化中的重要作用。《自然—通讯》日前 发表了该成果。

炎症反应是人类机体一种重要的免疫防御机制,有 助于机体抵抗病原微生物感染,但炎症反应失调也会导 致组织器官损伤,从而促使疾病发生。NLRP3炎症小体是 细胞内一种多蛋白复合物, 其活化能够促进炎症反应的 发生过程。近年来相关研究显示,其参与2型糖尿病、痛 风、帕金森、脂肪肝等多种人类重大疾病的发生过程,是上 述疾病潜在的干预靶点。

中科大与中山大学科研团队发现,CLICs蛋白家族在 线粒体损伤产生的活性氧的诱导下能够迁移到细胞膜 上,介导胞内氯离子的外流,从而进一步促进 NLRP3 炎 症小体的组装。抑制 CLICs 家族蛋白的表达或者活性,能 够显著抑制 NLRP3 炎症小体活化。

据介绍,该项成果不仅有助于了解2型糖尿病、痛风、 帕金森等疾病的发病机制,还能提供潜在的治疗手段。

中科院电工所等

研发首台基于国产超导 带材的高温超导发电机

本报讯(记者彭科峰)日前,记者从中科院电工所获 悉,上海电气集团上海电机厂有限公司组织专家对该所项 目"采用第二代高温超导带材的高温超导电机研发"进行 了现场验收。验收专家对该项目给予了高度评价。

据介绍,在上海市科委的支持下,中科院电工所协同 上海电气集团上海电机厂有限公司共同开展了高温超导 发电机技术研究,并在此基础上研制了500千瓦高温超导 发电机原理样机。该发电机为国内首台基于国产 YBCO 超导带材的高温超导发电机,电机设计为4极绕线式转子 超导同步发电机,其中超导转子励磁绕组为 YBCO 高温 超导带材绕制而成的跑道线圈结构,冷却方式为液氮浸泡 开放式冷却,运行温区为77K,低温杜瓦为双层旋转薄壁 杜瓦,液氮传输耦合器采用磁流体旋转动密封,转子多段 组合结构,定子为常规铜绕组,冷却方式为强迫风冷。

经过4年攻坚克难,相关团队先后解决了各种技术和 工艺的难题,掌握了超导线圈绕制、薄壁杜瓦、冷却系统和 转子结构设计、低温旋转密封和无线参数检测等多方面的 关键技术和工艺。

中科院昆明植物所

发现曾被认为野外灭绝 的云南梧桐

据新华社电被认为野外灭绝已近20年的中国特有植 物云南梧桐,日前在云南金沙江流域被重新发现。这两个 云南梧桐种群是被正在进行"中国西南地区极小种群野生 植物调查与种质保存"科考的中科院科研人员发现的。

据调查组成员、中科院昆明植物研究所助理研究员杨 静介绍,云南梧桐的濒危历史由来已久,1984年公布的 "第一批中国珍稀濒危保护植物名录"中,就将其定为国家 二级重点保护植物。1998年,世界自然保护联盟将其列为 野外灭绝的中国特有植物之一。受此影响,我国在1999年 发布的《国家重点保护野生植物名录》中认为其消失于野 外,从而删除了云南梧桐。

此次,中科院昆明植物研究所孙卫邦研究员带领的团 队分别在云南省宁蒗县和元谋县意外发现了云南梧桐两 个种群的身影。其中宁蒗县的种群有千余株,元谋县种群 则仅发现11株,均处于未成熟的果期

杨静说,这两个云南梧桐的种群均分布于悬崖绝壁间, 推测其濒危状况或与采食、放牧、开荒或气候变化的干扰有 关,建议对该物种的两个种群采取抢救性保护,以防止现有 单株及其生存环境遭到更多破坏。 (岳冉冉 赵珮然)

简讯

2017中日工程技术大会在青岛召开

本报讯 近日,2017 中日工程技术大会在 山东青岛落下帷幕。会议为期3天,本届大会 主题为"智能制造与创新服务"

山东省科协副主席王春秋表示,中日工程 技术大会立足于中日民间交流的沃土,着眼于 "一带一路"下的全球化新格局,聚焦智能制造 和创新服务,搭建包括技术成果转化与协同创 新、经济产业共同发展、工程高端人才国际化 合作、新科普与创新创业环境融合等在内的东 北亚交流合作平台。

据悉,大会活动包括大会报告、专题分论 坛、专利运营与创孵平台展,企业访问与合作 座谈等。其中,四个专题论坛的主题分别是 "智能装备与智能制造""国际人才交流与专 利技术成果转化合作""创客教育与创新服务 生态建设""智能制造创新实践:企业在行 动"。大会同期,青岛国际博览中心举办了"第 20 届青岛国际机床展览会"和"青岛国际工 业自动化技术及装备展览会"

(廖洋 仇梦斐 刘玮 荆春杰)

河钢邯钢钢轨产品 获得欧盟市场认证

本报讯记者8月8日从河钢集团邯钢公 司获悉,该公司钢轨产品近日通过欧盟委员会 认证,该企业由此成为国内唯一获得欧盟市场 钢轨产品"通行证"的钢铁企业。

欧盟委员会产品认证被认为是全球最苛 刻的认证, 其对钢轨产品的认证涵盖韧性、强 度、环保等多项指标。据悉,此次该公司通过认 证的钢轨产品为热轧轨和淬火轨,包括 R260 和 R350LHT 两个钢种,54E1、60E1、60E2 三 (高长安 吴兆军)

中国青少年航天创客 奥林匹克大赛决赛"开战"

据新华社电 2017 年"中国青少年航天创 客奥林匹克大赛"决赛8月7日在北京理工大 学举行。来自全国的 45 支决赛参赛队分为小 学组及中学组,将在接下来的两天内进行"搭 建月球基地"和"卫星集成与发射"等项目的激 烈竞赛

"中国青少年航天创客奥林匹克大赛"是 中国航天科技教育联盟的重要赛事活动之 一,也是"中国青少年奥林匹克"挑战赛活动。 大赛于 2017 年 4 月 24 日第二个"中国航天 日"正式启动,接受全国中小学生以团队形式 报名。据悉,本次大赛在国家航天局、中国航 天科技集团公司的指导下,由中国教育学会、 中国宇航学会主办,中国航天科技国际交流 中心及中国教育学会青少年创新思维教育研 究中心承办。 (白国龙)

第五届绵阳国际科技博览会 将彰显军民融合特色

本报讯 由科技部和四川省政府主办的第 五届中国(绵阳)科技城国际科技博览会将于 今年9月7日在绵阳举行。该届科博会将进一 步彰显军民融合特色,专门设置了军民融合 馆,规划了军工集团及国防工业、北斗卫星产 业、军民融合创新示范等展区;中兵装、中电 科、中船工业、航天科工、航天科技、中航工业、 中国航发等军工集团将组团参展,展示军民融 合最新应用技术和成果。

据悉, 其间还将举办北斗导航专业论坛、 平板显示高峰论坛、磁性材料专业论坛、通航 产业专业论坛、中国知识产权金融高峰论坛系 列专业论坛,并发布一批国家、省级重大科技 创新项目成果。歼31、翼龙无人机、水陆两栖 全地形车、大型机器人等一批最新科技成果也 将亮相科博会。

龙凤胎大熊猫维也纳过周岁生日

8月7日,在奥地利维也纳美泉宫动物园,大熊猫"福伴"(左)和母亲"阳阳"享用生日礼物。 7日,维也纳美泉宫动物园为龙凤胎大熊猫举行一周岁生日庆祝活动。"福伴""福凤"是欧洲 第一对通过自然交配生产的龙凤胎大熊猫,出生时又恰逢中奥建交 45 周年,具有特殊的象征意 义。正如奥地利副总理米特勒纳所说,大熊猫是奥地利和中国友谊的体现。 新华社记者潘旭摄

先进机器人学国际联合研究中心成立

本报讯 (记者彭科峰 通讯员戴天娇)⊟ 前,记者从中科院沈阳自动化所获悉,"先进机 器人学与机构学国际联合研究中心"近日在英 国伦敦大学国王学院机构学机器人学中心正

这是我国在机器人学与机构学领域的首 个国家级国际联合研究中心,也是中科院机器 人与智能制造创新研究院(筹)获得国家科技 部认定的首个国际科技合作基地。

据介绍,"国家国际科技合作基地"每年 以各省(区市)科技厅、驻外使馆推荐等方式 进行申报,经国家科技部审批认定,包括国际 创新园、国际联合研究中心、国际技术转移中 心和示范型国际科技合作基地等类型。其宗 旨在于提升我国国际科技合作的质量和水 平,发展"项目一人才一基地"相结合的国际 科技合作模式, 使其成为国家在利用全球科 技资源、扩大科技对外影响力方面的骨干和

中坚力量,对领域或地区国际科技合作的发 展起到引领和示范作用。

"先进机器人学与机构学国际联合研 究中心"于 2016年 11 月获得国家科技部认 定,该中心将以中英前沿科技合作为牵引, 全面推进国际科技合作与交流,面向国家 能源、海洋以及智能制造领域的重大需求, 开展机器人学领域前沿技术研究以及工程

■学术·会议

冰冻圈变化与可持续发展国际研讨会

急需对策应对冰冻圈未来巨变

本报讯(记者刘晓倩)近日,由中科院西 北生态环境资源研究院主办的冰冻圈变化与 可持续发展国际研讨会在兰州召开。来自中 国、美国、瑞士、冰岛、尼泊尔、巴西等 10 余国 的 200 多名专家学者共同探讨冰冻圈变化过 程与机理、冰冻圈变化的影响、冰冻圈可持续 发展及服务功能, 为社会经济可持续发展寻

中科院院士秦大河指出,碳排放导致全 球变暖,冰川面积的广泛退缩及北半球积雪

覆盖面积退缩是毋庸置疑的事实。这种变化 将对生态环境及人类社会经济产生潜在而深 远的影响,比如食物和水短缺、沿海洪灾、更 多物种灭绝等。中科院院士姚檀栋则论述了 青藏高原迅速升温将引起降雨、冰川加速退 缩等一系列生态环境效应,并表示,未来研究 应当重点放在预测第三极地区环境变化的不

与会专家学者还表示,目前,冰冻圈的水 文、生态、环境和经济等效应的影响涉及社会

经济活动和可持续发展,已经引起科技和管 理部门的高度注意。在中国, 预估到本世纪 末,冰冻圈会发生巨大变化,由此带来的水资 源和生态环境安全、自然灾害和工程建设、文 化、旅游等方面的问题日益凸显,迫切需要提 出应对策略和对策。

据介绍,冰冻圈是地球表层连续分布并 具有一定厚度的负温圈层, 是气候系统五大 圈层之一,与地球系统其他圈层相互作用强 烈,在全球变化中扮演着重要角色。