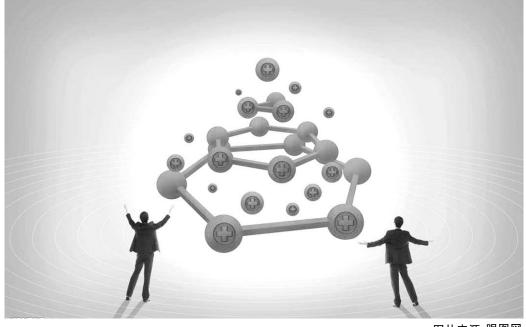
近年来,转基因品种安全性问题在我国学术界和民众中引起了一些争议,这本来是一 件正常的事,不应称之为"妖魔化",也不拟采取"坚决遏制负面舆论"的做法。毋庸置疑,转 基因育种技术将以巨大的潜力引领未来,对于增强我国科技的国际竞争力,支撑我国农业 生产的持续发展具有十分重要的作用。


转基因作物育种发展阶段、问题与建议

《中国科学院院刊》2013年第3期发表了两 篇倡导发展新一代农作物生物育种技术的文章, 随后《中国科学报》等报刊陆续有文对此加以论 述;一些专家提出的战略咨询报告也用了这一提 法。我非育种工作者,读了这些文章后增进了知 识,也受到启示,但有一个概念方面的问题,经反 复思考后仍不甚明了, 现提出来同大家讨论,请

生物育种涵盖了从基因工程 到杂交选育共七类技术

什么是"生物育种"?从字面上看似可理解为 植物、动物、微生物育种的统称。从国家已启动的 重大科技专项"转基因生物新品种培育"的名称 看,这一理解看来是适当的。但《2013-2018年中 国生物育种业市场前景分折与投资风险评估报 告》则认为"生物育种的定义是培育优良生物的 生物学技术",涵盖了从基因工程到杂交选育共 七类技术。黄大昉先生所赋予的定义则是"农作 物生物育种是以转基因技术为核心,融合了分子 标记、杂交选育等常规手段的先进技术",并强调 "生物育种又称转基因生物育种",但"千万不能 把生物育种狭隘地理解为只是转基因,它还包括 了传统育种的先进技术"。我直观感觉上述列举 的定义不够清晰,且相互交错。另外,当前是否已 处于建立以转基因技术为核心的育种技术体系 的时候也值得商榷。

上面列举的中科院院刊两篇论文的英文摘 要中,作者分别将"生物育种"译为"Bio—Breed ing"与"Biotechnology Breeding",前者为中文原 义,而我认为后者的含义是适当的,即"生物育 种"的确切表达应为"生物技术育种",或称之为 以转基因技术为主导、包含细胞与染色体工程、 分子标记等技术在内的生物技术育种,"生物技 术"不等同于"生物学技术",目前不应将常规育 种技术(如杂交选育)包括在生物技术育种体系 之中,而应倡导两者的紧密结合、协同发展。2014 年中央一号文件中提出要加强分子育种的基础 研究与技术开发,我理解,此处所说的"分子育 种"与"生物技术育种"含义基本相同,是一种简 称,是未来的发展方向,更强调在分子和基因水 平上精准操作的遗传改良。鉴于此,我想将问题

图片来源:昵图网

引申一下,就常规育种与转基因育种(生物技术 育种的核心)之间的关系,以及转基因作物育种 当前所处的发展阶段谈谈个人的认识。

转基因作物应服务于 我国当前和未来农业发展需求

近年来,转基因品种的安全性问题在我国学 术界和民众中引起了一些争议,这本来是一件正 常的事,不应称之为"妖魔化",也不拟采取"坚决 遏制负面舆论"的做法。按常识判断,我个人认 为,按程序经严格审定的转基因食品和普通食品 一样是相对安全的,但其遗传效果和生态效应有 待长期观察的主张也是有道理的,故在一个相当 时期里应允许人们有选择权。在这里,我想强调 的是转基因作物应用不仅有一个安全性问题,而 更为重要的是,要在实践中证明其不可替代性, 以及如何更好地服务于我国当前和未来农业发 展的需求。

毋庸置疑,转基因育种技术将以巨大的潜力 引领未来,对于增强我国科技的国际竞争力,支撑 我国农业生产的持续发展具有十分重要的作用。 大势所趋,非搞不可。但就生产环节而言,当前占 主导地位的仍属常规育种技术。据报道,转基因品 种种植面积近年来在一些国家有很大发展, 如转 基因大豆在美国种植率高达90%以上,玉米则达 到 70%,但仅限于两类基因,抗虫害与抗除草剂 (且具特定性);近年来我国大量进口转基因大豆, 其优势之一是含油量高,但这一性状并非转基因 的效果。可以认为,目前为止,与产量直接有关的 基础性状仍是通过常规育种技术获得的; 从长远 看,转基因技术作用的发挥仍然必须以常规育种 作为基础。这里需要强调的另一个问题是,我国作 物育种方向长期以来以高产为主,并追求超高产 目标,这在一定历史时期是必要的,但今后为实现 大范围的持续均衡增产还必须重视确立明确的抗 逆、广适应育种目标,特别是抗干旱与水土资源高 效利用目标。今年中央一号文件提出培育一批突

破性新品种的要求,从哪里突破?在什么性状上突 破? 我认为,主要应从抗逆性上,特别是在改善抗 旱节水性状上寻求突破。

对转基因抗旱节水新品种 的看法和建议

从原理上看,通过转基因途径培育抗旱节水 新品种大有希望,但实际上困难很多。这既是当 前的一个研究热点,也是一个难点。据报道,全世 界已有数百个干旱响应基因被分离出来,并获得 相当数量的转基因植株,但长期停留在实验阶 段。经历多年努力,美国孟山都公司于2012年推 出第一例商业用抗旱转基因玉米(CSPB Com), 中等干旱条件下平均增产6%,因未显示出其明 显优越性,推行并不理想。我国近年在河北、山 西、山东、陕西、甘肃等地用常规技术培育出一批 小麦、谷子等抗旱性较强的新品种,并得到推广 应用。2005年在罗马召开的第二届世界干旱大 会的总结中曾指出"基因组研究信息如此之多, 但这信息在缺水条件下的田间应用又如此之 少";2013年在澳大利亚召开的第四届世界干旱 大会的通告中再次呼吁,应重视植物抗旱性分子 研究与田间应用之间的衔接,为消除它们之间的 巨大缺口,应加强不同学科之间的协调配合。学 术界早已明确,植物抗旱性是一个十分复杂的特 性,不但是多基因控制的,而且是通过不同途径 实现的,加之当前抗旱转基因研究又多限于机理 尚不十分清晰。且与高产性状存在一定矛盾的耐 旱性范畴,即通过基因工程能控制的抗旱性状仅 是一小部分,而且其表达效果严格受到环境条件 的限制,故难度很大。有学者指出:"不论是抗旱 还是抗盐,比人们想象的要复杂得多,真正的转 基因抗逆农作物还没有出现,特别是很抗逆的作 物,目前还停留在人们的想象中。"基于上述情 况,就通过转基因途径培育具有突破性的品种, 特别是培育抗旱节水新品种的有关问题,提出几 点个人看法和建议:

1.转基因作物育种具有很大潜力,是育种工 作取得新突破的希望所在,但不论当前和未来都 应强调转基因育种和常规育种的紧密结合,而且 以常规育种作为基础。当前不拟笼统倡导以转基 因技术为核心,在生产环节上仍应坚持以常规育

种技术(包含杂交选育、杂种优势利用、理化诱变 等)为主,在研究层面上则应切实加强转基因育 种的系统性研究和有针对性开发。

2.在育种目标上,在继续重视高产与超高产 性状的同时,应将另一重点放在抗逆与广适应 上,特别针对广大旱区和缺水灌区,选育抗旱节 水新类型已成为一种迫切需求,这方面虽然面临 不少困难(如抗旱机制的复杂性、干旱环境的多 变性、可控制性状的局限性等),但转基因技术仍 属最终解决这一难题的最佳选择,不过要有耐 心,应作好长期努力的思想准备。

3.在研究对象上,除农作物外,将抗旱转基 因植物研究的另一个重点放在林草植物上更为 可行,因为这方面的抗逆基因资源更为丰富,而 且与一年生农作物相比,这类植物存活需求是第 一位的,产量高低是第二位的,生态效益在先,只 要生存下来就有机会实现其生态经济目标。

4. 切实加强抗旱转基因育种的基础理论研 究,这方面目前主要存在两个问题:一是近年来 植物抗旱机理研究相对分散与滞后,难以适应抗 旱转基因技术迅速发展的需求,例如难以为确定 耐旱主效基因及耐旱有关基因的有效聚合提供 更有力的依据;二是实验室分子水平研究与田间 应用之间缺乏有效衔接,或存在较大空白,整体 (个体)抗旱生理机制研究一定程度上被忽视,这 也削弱了转基因技术的更好发挥。今后应在这方 面制定一个有指导作用的系统研究方案。

5. 在政策层面上,今后应重视以下几个问 题:(1) 在科技立项上注意保持常规育种和转基 因育种之间的平衡(包括人才培养、资金投入、条 件建设等);(2)对转基因育种除安全性外,应重 视全面评价其实践效果;(3) 重视不同学科专家 之间的协同、交流及相互质疑,例如有关重大项 目的立项、评议等活动除本学科专家外,应邀请 相关领域专家参与,鼓励开展争议,以求在充分 讨论的基础上取得共识。

山仓,西北农林科技大学教授,中科院 水利部水土保持研究所研究员,中国工程院

有必要重启退耕还林工程吗

■李秀彬 谈明洪 辛良杰

从 2013 年起,涉及我国 25 个省份、实施已 有 15 年的退耕还林政策规定的资金补贴期限陆 续到期。据媒体报道,甘肃、内蒙古、贵州、湖南、 湖北、四川、重庆、云南等省市都向国务院递交了 重启退耕还林工作的报告; 国务院在2014年可 能将重启中断6年多的退耕还林工程。根据对山 区农业土地利用的变化研究,笔者发现,山区农 民毁林开荒、扩大耕地面积的趋势已经发生了根 本性逆转。坡耕地的弃耕撂荒才是目前和今后较 长一段时间内,山区土地利用变化的客观趋势。 在这种情况下,再大规模实施退耕还林工程是没 有必要的。

农户自愿撂荒坡耕地的情况

山区农地弃耕的现象,是从上世纪90年代 中期伴随"民工潮"出现的。2003年以后,弃耕 规模明显扩大。我们对重庆市酉阳、武隆、石柱、 巫山四个山区县的调研发现,近10年间,农地 弃耕的面积占总耕地面积的15%~30%之间。我 们的调查是通过遥感和农户抽样两个途径展开 的。农户样本总计1015个,调查发现,这些农户 的弃耕面积占农户承包耕地面积的19.6%;遥感 调查的结果为17.9%。两种途径调查的结果相 差不大。这个结果并不包括农户退耕还林的面 积。如果加上后者,则弃耕的土地可能占总耕 地面积的30%左右。农户调查还发现:弃耕的 土地多为旱坡地,占83%;水田只占17%。遥感 调查的结果分别为82%和18%。这说明弃耕的 大都是质量较差的土地,而这些土地通常水土 流失风险较高。

农地的弃耕撂荒现象,学术界与媒体近年来 时有报道。我们收集了 2000 年以来在学术刊物 与报纸等媒体上的弃耕撂荒报道,发现涉及退耕 还林的 25 个省份均出现了较大范围的弃耕撂荒 现象,撂荒耕地占比多在5%至30%之间;中科院 遥感所通过土地遥感制图,发现丹江口水库上游 这一以山地为主的地区,2000至2010年间耕地 面积减少了27%,与我们在重庆的调研结果差异 不大;2011年中国家庭金融调查与研究中心通 过对全国 25 个省、80 个县市的住户调查发现, 约有12.3%的农用地处于撂荒闲置状态。由此可 见,我国农地的弃耕撂荒现象并非个例,而是非 常普遍与严重了。此外,从政府对这一问题的响 应,也可以看出这一问题的严重性。早在2004年 3月30日,国务院办公厅就下发了《关于尽快恢 复撂荒耕地生产的紧急通知》,其后的2008、 2011年等年度,农业部办公厅均下发通知,要求 各省调查并上报耕地撂荒情况。

农户为什么撂荒坡耕地

山区人口数量减少,特别是青壮年劳动力大 规模外出务工,造成从事农业的劳动力数量减 少、质量下降。许多人都会把耕地弃耕撂荒归因 于此。而我们对山区农业投入产出的调研分析发 现:最直接的原因,还是劳动力成本上升造成的 种植业净利润的下降。

10年来农业雇工工资的上涨幅度是粮食价 格、农资价格上涨幅度的 2.5 倍左右。为避免由 此带来的种植业净利润的降低,农户便增加机械 等省工性生产资料的投入,以替代劳动力投入, 同时租入其他农户的土地扩大种植规模,提高劳 动生产率。因此,2004年后,我国粮食主产区的 劳动生产率大幅度上升。以黑龙江省的玉米生产 为例,每个劳动日投入的粮食产量从70公斤上 升到 148 公斤,9 年间翻了一番。然而,地形崎 岖、地块破碎的山区,却难以实现这种替代,劳动 生产率上升速度缓慢。重要的是,土地利用的净 利润与平原主产区之间的距离越拉越大。以山地 面积占比较大的重庆为例,同是玉米种植,2012 年的劳动生产率为28公斤/日,仅为黑龙江的 1/5。因为重庆玉米种植的亩均劳动力投入仍为 15个工日,而同期黑龙江已经降到3个工日;劳 动力成本在总生产成本中的比例,黑龙江已降到 25%,而重庆却上升到68%。其结果,黑龙江、吉 林、山东等平原主产区的玉米种植,净利润与9 年前相比是上升的;而重庆、贵州、云南等省却一 直下降,按市场的农业雇工价格计算,如今这些 地区的玉米种植是亏本的。

我们在重庆山区的农户调研,分地块计算了 玉米、土豆、红薯等主要作物的投入产出。发现在 计人劳动力成本之后,亏本的土地都是离家较远 和质量较差的坡耕地。而撂荒地的空间分布与此 吻合。地块是否被撂荒,耕作距离远近的影响最 为显著,因为对于留守的老龄劳动力来讲,没有 机械辅助的长距离运输, 其劳动强度难以适应。 调查发现,农户的耕作半径近年来在持续缩短, 目前一般不超过1公里。另外,耕地撂荒还与野 猪的危害有密切联系。

弃耕撂荒还会进一步加剧吗

其实,山区耕地的弃耕撂荒现象并非中国独 有。许多发达国家在其工业化和城市化过程中, 都先后经历了这一过程。这一过程伴随人口的城 市化发生,以国家农地面积的收缩和林地的扩张 为特征,国际地理学界称其为"森林转型"或"农 地边际化"。输出劳动力的农村地区,特别是边远 的山区,由于人口的减少和农业活动强度的降 低,土地资源所承受的压力下降,生态状况逐步 改善,经济发展与生态状况通过人口城市化呈现 "双赢"的局面。

一些坡耕地面积较大的新兴市场经济国家 和地区,例如韩国和我国的台湾,在上世纪60年 代和 70 年代之后,相继出现了农耕地总面积达 到顶点后持续下降的过程。而发生这一转折的时 间,恰恰是在刘易斯转折点前后劳动力价格快速 上涨的时候。韩国山区弃耕面积在1965~1998 年间总计 21.7 万公顷,相当于同期全国耕地净 减少量的62.7%。根据台湾休耕地的调查,这种 土地的面积在进入新世纪之后大幅度上升。2010 年休耕地的面积达到20多万公顷,占全岛耕地 总面积的1/4。日本的休耕和放弃耕作的土地, 在2010年达到59.6万公顷,占当年总耕地面积 的 13.0%。

预计我国山区坡耕地弃耕的现象还将持续。 如上所述,这是刘易斯拐点后的发展条件决定 的。首先,农地边际化和森林转型的宏观背景是 人口城市化,而我国才刚刚走完城市化加速中期 阶段的前半段。在面对工业化和城市化所带来的 劳动力价格上升的压力下,不易实现机械替代的 山区坡耕地的退耕,以及由此带来的农业在空间 上的收缩难以避免。其次,边际耕地上的农业,还 受到林业的竞争,包括用材林和经济林。这些林 业生产,由于劳动力投入相对较少,在与种植业 的竞争中处于优势。特别是青壮年劳动力迁出后 造成的农业劳动力的老龄化,使山区农业劳动力 不仅数量上减少,质量也在下降,劳力投入较低 的林业就更加具有比较优势。最后,在人口城市 化的过程中,处于迁出区的山区,近年来出现明 显的村落衰败现象,其结果是教育、医疗等基本 社会服务的提供成本上升,例如中小学校的被迫 撤并和乡村医生的流失。政府为应对这一危机, 同时为了避灾,采取了"易地搬迁"的扶贫策略。 部分山区省,如贵州和陕西,都在实施超过200

图片来源:昵图网

万人的大规模搬迁工程。这会进一步加剧劳动力 从农业中的析出,促进农地边际化的进程。

坡耕地撂荒使退耕还林政策失去依据

山区的水土流失,主要是因违背自然生态规 律的人类活动造成的。而这些活动的首要者,当 属农业垦殖在空间上的扩张。"退耕还林工程"的 初衷,正是要逆转这种扩张。然而,当这个过程已 经自行逆转时,就应遵循事物发展的客观规律, 考虑适时停止该工程,起码不应再继续扩大实施

本文的数据和分析表明, 我国山区坡耕地 正处在边际化过程中。其根本原因是伴随人口 城市化和刘易斯转折过程出现的劳动力成本 的上升,而这一过程还将持续很长一段时间。 坡耕地撂荒的直接原因,是劳动力成本上升造 成的种植业净利润或地租降低为零。这也是十 余年来"退耕还林工程"获得成功的主要原因

之一。如果把退耕补贴看成是政府出资"租用" 农户对这类土地的"农业使用权",那么从现在 的弃耕撂荒规模判断,政府已经没有必要再为 此支付"租金"了。

补贴作为一种政策,应该被视为政府不得已 而为之的措施, 因为它会带来很多负面的问题。 在此不一一赘述。需要说明的是,"退耕还林工 程"是否重启的决策,除了考虑政府投资扩大退 耕还林工程的必要性,还要考虑停止补贴之后农 户毁林的可能性以及实施与否的生态效应。综合 的权衡是决策者的事情,本文仅从土地利用变化 的规律出发,讨论该工程扩大的必要性,全面的 必要性评估超出笔者的知识范围。

作者单位:

李秀彬、谈明洪、辛良杰工作单位系中国科

学院地理科学与资源研究所。