
动态

科学家发现食肉植物化石

本报讯 在影片《侏罗纪公园》里,John Hammond 的手杖顶端的琥珀里有一只标志性的 蚊子,科学家发现,一个保存完好的化石,折射了 地球 4000 万年前的情景。

这个多叶标本并不是一只古老的昆虫,它可 能以某些虫子为食。《新科学家》杂志报道称,研 究人员从始新世化石中发现了这种食肉植物的 遗骸,他们怀疑这种植物与使用黏性绒毛诱捕昆 虫的现代植物有亲缘关系。这个从俄罗斯的一座 琥珀矿中发现的化石让科学家重新评估植物分 布问题,因为其捕蝇幌科家族的后代目前只分布 于南非。 (张章)

加拿大支持干细胞创新研究

本报讯 加拿大安大略省将投资 300 多万加 元成立安大略省再生医疗研究院,以支持干细胞 研究人员开发新疗法,从而帮助一些受慢性疾病 困扰和因此需要支付高昂医疗费用的病人。

安大略省再生医疗研究院的成立,旨在集合 世界级的团队进行顶尖研究,并将新疗法应用于 癌症、糖尿病、失明、心脏病和肺病等多种疾病。 该研究院是安大略省干细胞研究计划及再生医 疗商业化中心的合作项目。至此,安大略省已承 诺投入 1.5 亿加元为 139 个干细胞和再生医疗 研究项目提供资助。安大略省研究及创新厅厅长 Reza Moridi 表示,该项目为治疗和处理一些世 界上最具破坏性的病症带来希望,同时还具有重 大的经济效益。

新型注射器没有针头也能注射

新华社电 不用针头也能注射, 孩子再也不 用害怕打针了。日本开发的一种新型注射器不用 针头而靠气泡压力注射,只需将注射器紧贴皮 肤,没有疼痛感就可以将药物高精度地输送到目

目前市场上也存在无针注射器,它们通常是 依靠弹簧的力量产生高压来发射液体,穿透皮肤 后将药物送到肌肉,但却有可能损害神经,而且 多少还是有一些疼痛感

芝浦工业大学副教授山西阳子率领的研 究小组新开发的这种无针注射器全长约 10 厘 米,它利用在液体中施加电压来高速发射气 泡,利用气泡破裂的力量在细胞上开出微细的 孔,然后通过这个孔将含有药物的微小气泡注 入细胞内部。气泡的气体收缩后,只有药物到

由于方向性很明确,所以新型注射器能针对 局部进行高精度治疗,而且由于开出的孔只有4 微米左右,所以对细胞的损害很小。 (蓝建中)

阿丽亚娜火箭发射两颗卫星

新华社电 法国巴黎时间 12 月 6 日 21 时 40 分(北京时间12月7日4时40分),一枚阿丽亚 娜 5 型火箭从法属圭亚那库鲁航天中心发射成 功,将两颗通信卫星送入轨道。这是阿丽亚娜5 型火箭今年第6次成功发射。

据负责发射的欧洲阿丽亚娜航天公司介绍, 这枚火箭载有美国卫星电视服务商"直播电视公 司"(DirecTV)的 DirecTV-14 卫星和印度空间研 究组织(ISRO)的 GSAT-16 卫星,它们分别在发 射 27 分钟和 32 分钟后成功与火箭分离,进入地 球同步轨道。

阿丽亚娜公司说,截至12月6日,2014年 全球成功发射的全部 14 颗地球同步轨道商业卫 星中,9颗由该公司发射,其中4颗卫星用户来 自亚洲,3颗来自美洲,2颗来自欧洲。此外,该公 司 2014 年发射卫星的总重量也再创新高,达到

美"猎户座"载人飞船成功首飞

标志 NASA 迈出重返人类空间飞行第一步

本报讯 12 月 5 日,成千上万名美国人站 在佛罗里达的"空间海岸"边观看全世界最大 型的火箭第一次将新型的"猎户座"载人飞船 发射升空。作为航天飞机的替代产品,美国宇 航局(NASA)的"猎户座"载人飞船有朝一日将 把人类送上小行星乃至火星。

此次飞行并没有将任何一名宇航员送上 天,在环绕地球运行两圈即进行持续约4个半 小时的飞行后,"猎户座"成功降落在太平洋 上。此次试飞的最大高度达到距离地面 5800 千米,是国际空间站距离地面高度的15倍,比 40年来任何载人航天器飞行的高度都要 高---自1972年"阿波罗"17号从月球返回 后,从没有载人飞船飞得这么远。

此次发射比预期时间推迟了1天,"猎户 座"的成功降落标志着人类第一艘以深空探索 为目标的载人飞船首次试飞取得成功。NASA 说,这是火星探索之旅的"重大里程碑"

在发射前,约翰逊空间中心的"猎户座"飞 行主管 Mike Sarafin 于休斯敦表示:"自从航天

飞机项目结束以来,我们已经有一段时间没有 这种感觉了。"他说:"我们将在美国本土发射 一艘美国飞船,并开始新的探索深空任务。

由于最后一艘航天飞机于2011年停飞,美 国宇航员此后都是搭乘俄罗斯的飞船进入太 空,但 NASA 希望"猎户座"载人飞船能够在 2021 年将宇航员送入太空。Sarafin 强调,在地 面指挥中心负责飞行控制的都是航天飞机项 目的"老手"。"感觉好像一个乐队又重新聚在

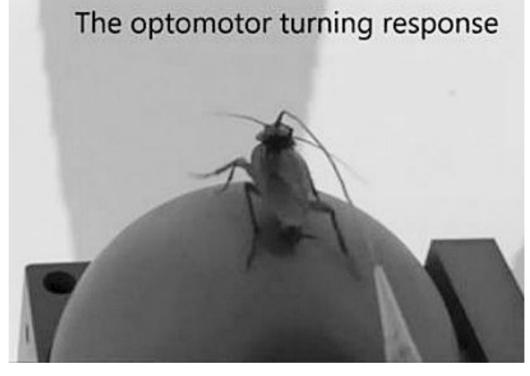
"猎户座"项目于 2005 年启动,布什政府最 初打算用它将美国宇航员重新送上月球。之 后,该计划遭遇了资金短缺和延迟,甚至险些 被总统巴拉克·奥巴马取消, 最终其被重新定 义为"多用途载人飞行器"。"猎户座"3.3 米高 和 5 米宽的太空舱被设计用来在 21 天的时间 里搭载2至6名宇航员。

此次耗资 3.7 亿美元的试飞为第一次载人 飞行——将把宇航员送入月球轨道——铺平 了道路。然后"猎户座"将超越月球首先抵达小 行星,最终再奔赴火星,但那最早也要等到21 世纪30年代。然而迄今并没有关于"猎户座" 未来人类空间飞行的详尽时间表和计划,因此 这架载人飞船的最终命运依然悬而未决。 NASA 局长 Charles Bolden 于上周三在休斯敦 表示:"我并不想让人们过于关注它的命运。这 只是一次旅行。"他强调,"猎户座"有能力超越 以往任何的美国宇宙飞船,并称星期五的飞行 "创造了历史"。

据悉,"猎户座"5日日出时分从佛罗里达 州肯尼迪航天中心发射升空,大约3小时后飞 到距地球约5800千米的最高点,已飞出了近 地轨道。然后,"猎户座"以每小时 3.2 万公里 的高速重新进入地球大气层,其隔热罩经受了 约 2200 摄氏度的高热考验。这与飞船从月球 返回的速度和温度很接近。发射 4 个半小时 后,在3个主降落伞的拖曳下,"猎户座"平稳 落入美国加利福尼亚州海岸以西的太平洋海 域。等待在那里的美国海军帮助回收飞船,以 供将来使用。

"猎户座"载人飞船于 12月 5日搭载"德尔塔"-4 重型火箭发射升空。 图片来源:Clara Moskowitz

此次试飞使用了约 1200 个传感器来记录 飞行和系统的每一个细节。NASA 计划全面分 析这些传感器数据,以进一步改进"猎户座"的


■美国科学促进会特供■

科学此刻 ScienceShots

蟑螂有眼 黑夜不黑

你是否纳闷当你摸索着打开厨房灯的同时。 蟑螂却能在黑暗中跑来蹿去?科学家知道这种昆 虫会用触觉和嗅觉导航,但现在他们发现了这一 谜题的一块新拼图:蟑螂还可以通过每个复眼中 成千上万的对光敏感的细胞(它们被称为感光细 胞)集合视觉信号,从而在一片漆黑中看见周围

为了检测蟑螂的视觉敏感度,研究人员给蟑 螂设计了一个虚拟的现实系统,发现当蟑螂周围 的环境旋转时,这种昆虫会朝着同一个方向旋转 来稳定其视觉。首先,他们把蟑螂放在一个追踪

球上,使蟑螂不能用其口器或是触角导航。然后, 科学家围绕蟑螂旋转黑白光栅,灯光照明的强度 从灯光明亮的房间到没有月光的夜晚。

研究人员近日在线发表于《实验生物学报》 的报告称,蟑螂对光线暗度低至 0.005 勒克斯的 旋转环境进行了回应,它的每个光感受器每十秒

仅可以接收到一个光子。他们表示,蟑螂一定在 依赖深部神经中枢的一种未知的神经信息处理 过程处理复杂的视觉信息;神经中枢位于大脑底 部并对动作进行调节。了解这一机制或可以帮助 科学家为夜间视力设计出更好的成像系统。

(冯丽妃 译自 www.science.com,12 月 7 日)

图片来源:THOMAS KITCHIN

杀狼救畜适得其反

本报讯 当生活在美国华盛顿州 Huckleberry pack 的灰狼今年夏天杀死了 30 只羊后,该州的 野生动植物官员以射杀 4 匹狼的方式进行了回 应,其中包括一匹领头的雌狼。许多人认为,这类 名为"补救性控制"的捕食者管理方法能够解决

但一项新研究调查了25年间狼群在3个州 (爱达荷、怀俄明和蒙大拿)捕食牛羊的情况以及野 生动植物管理机构之后的报复性措施。结果研究 人员发现,这一方法实际上会产生反效果。科学家 在近日的《科学公共图书馆一综合》上报告指出,这 会导致第二年牛羊的死亡数量增加而非减少。确 实,该研究揭示,在狼群占领区,杀掉这种野生的犬 科动物,来年狼群袭击羊群的几率会增加4%,袭击 牛群的几率则增加5%~6%。

研究人员表示,包括狩猎在内的射杀和诱捕

野狼会适得其反,原因是杀戮会破坏狼群的社会 结构。研究人员之前曾证实,对美洲狮的杀伤控 制也出现失败,原因也是这种行为会导致狮群内 部出现动荡。丧失负责繁育的一对狼或其中一匹 狼的狼群会出现分裂。科学家表示,之后,已经性 成熟的年轻的狼会组建自己的狼群,这样一来, 负责繁育的狼的数量就出现增加。

通常情况下,这些年轻的狼无法从前辈那里 得知在何处和如何捕猎。而且,当它们拥有幼狼 后,它们会被束缚在巢穴内,就更难猎到鹿和麋 鹿,因此它们可能转而袭击羊和牛。科学家总结 道,能解决这一问题的唯一方法是杀掉所有的 狼。但是杀掉所有的狼不是合适的方法,因此研 究人员表示,大农场主和农民应增加使用非致命 干预措施,例如使用狗进行看护、骑马巡逻、使用 旗帜和探照灯等。 (唐凤)

废弃柑橘可生产生物燃料

新华社电 如何处理废弃柑橘是日本柑橘产 地三重县的一个棘手难题。三重大学研究人员新 开发出一种技术,能利用废弃柑橘生产生物燃料 生物丁醇,变废为宝。

据《日本农业新闻》报道,在柑橘种植行业, 每年有大量的柑橘因为果实破损,或是质量不佳 等原因被废弃。三重县的柑橘产地每年产量达到 1万吨,除了榨汁后的残渣外,还有约300吨不符 合规格的柑橘被废弃。

三重大学研究生院教授田丸浩率领的研究 小组, 利用能实现糖化和发酵的两种微生物,将 柑橘等废弃物放置在一个容器内完全实现糖化, 无需预先处理,就能够有效生产出生物丁醇。

研究人员把存在伤痕而不能上市或腐烂的相 橘连皮投入发酵罐中,利用厌氧性食纤维梭菌,用 一周时间实现完全分解和糖化;然后利用发酵生产 中常用的丙酮丁醇梭菌进行发酵,制成含有70%生 物丁醇的燃料。实验中,3公斤柑橘榨汁后的残渣在 10天内制造出20毫升生物丁醇。

利用这一技术,除柑橘外,苹果、甜菜、甘薯、 稻草、废纸以及利用木材生产纸浆后的废弃物都 可以用来生产生物丁醇。

目前,生物燃料的主流是生物乙醇。与生物 乙醇相比,生物丁醇在燃料性能和经济性方面有 明显优势,能与汽油达到更高的混合比,而无需 对车辆进行改造,单位体积储存的能量更多。

美"百脑失踪之谜"水落石出

本报讯看到这则消息不要发疯:美国得克萨 斯大学奥斯汀分校失踪的 100 个大脑的踪迹已 水落石出。《纽约时报》报道称,经过充满矛盾的 案情描述与混乱的一天后,该校公布的一项声明 称,这些大脑在十多年之前就被处理掉了。尽管 前一天曾报道大脑失踪,该校表示,这些大脑来 自于上世纪50年代的一些精神病患者,并没有 被错误地交付给另一所大学。

这些器官可能永远不会再被提及,如果不是 因为近期出版的《畸形:得克萨斯州精神病院被 遗忘的大脑》一书,该书使大脑的故事重新回到 聚光灯下,还让该校官员在他们的储藏设施与记 录中翻箱倒柜、四处翻腾。 (鲁捷)

||自然要览

选自英国 Nature 杂志 2014年11月27日出版

地下生物多样性在地面上的影响

地下生物多样性在很大程度上是人们看不 到、也不去想的,但越来越多的证据表明,生活在 地下的微生物和动物的巨大多样性对于改变整 体生物多样性和陆地生态系统功能有显著作用。 在这篇综述文章中,Richard Bardgett 和 Wim van der Putten 对最近关于地下生物多样性的生态和 演化作用的研究工作进行了分析,指出了将会提 高我们对土壤生物多样性如何影响陆地生态系 统对环境变化的生态反应和演化反应的认识的 研究领域。

一种冈瓦纳哺乳动物的解剖特征

Gondwanatheres 是与恐龙一起生活在晚白 垩世和早古新世南半球大陆上的哺乳动物。由 于我们只是从几颗牙齿和一些颌骨碎片知道 它们, 所以它们的外表和演化关系仍比较模 糊。来自马达加斯加白垩系地层的一种怪诞 的、大小跟獾差不多的化石哺乳动物的完整头 骨改变了这一切。虽然几乎可以肯定是高度派 生的(这也符合人们对那个时候的马达加斯加 这个独特本地海岛动物群落的一个成员的预

期),但 Vintana 显然就是一种 Gondwanathere。 这种草食性的、动作敏捷的大眼睛动物的解剖 特征显示, Gondwanatheres 与人们更熟悉的"多 尖齿兽目"相关,后者是与啮齿类动物相似的 一类成功的长寿命哺乳动物,现已灭绝。

饮食问题及其解决办法

在世界范围内,人类的饮食都在随收入增长 而变化,这对环境和公共卫生都有潜在影响。 David Tilman 和 Michael Clark 对饮食"西化"的 影响进行了量化,并且对于饮食的很多方面,他 们还在健康后果与环境后果之间发现了密切的 联系。如果不加阻止,那么当前的饮食趋势到 2050 年将会实质性地增加全球温室气体排放和 提高II型糖尿病、肥胖症和冠心病的发病率。对 此我们能做什么呢?个人作出知情选择将会有所 帮助,但如果环境和农业领域没有重大政策变化 的话,总体上几乎没有效果。

Toll-受体在身体模式形成中所起作用

沿头部到尾部轴线的身体伸长在动物发育 过程中是必不可少的。对果蝇来说,伸长的空间

提示是由基因的模式化表达提供的。空间提示怎 样引导伸长所需的细胞重排一直不知道。这项研 究识别出三个细胞表面 Toll-家族受体,它们成 条状沿头部到尾部的轴线表达,调控细胞的收缩 特性,以产生导致组织伸长的极化重排。

对一个黑洞质量标准的再校正

本星系群中的 Seyfert 星系 NGC 4151,更具 体来说是其活动星系核(AGN),已成为一个有 用的宇宙学工具。正如各种不同方法所推断的那 样,该星系,还有与其类似的星系 NGC3227,都 具有使其在校正 AGN 中黑洞质量方面有用的 特性。然而,有效校正需要距 NGC 4151 的准确 距离,而此前这个数据一直没有。这项研究报告 了根据对 NGC 4151 的热尘埃发射区的观测结 果得出的一个新的尘埃视差距离。这个19兆秒 差距的新数值表明,该星系中央黑洞的质量与以 前的估计值相比增加了 1.4 倍, 也为其他 AGN 中的黑洞质量提供了一个相应的修正。

二氧化钒的金属—绝缘体转变

二氧化钒会发生从一个高温金属相到一

个低温绝缘相的转变,同时伴随着晶格结构的 一个变化。但是尽管进行了多年研究,这种耦 合在一起的结构和电子转变的起源仍然不清

现在, John Budai 及同事发现,某一类别的 晶格振动(强非谐声子)在驱动这两个相互竞 争的相之间的转变中起关键作用。关于这一种 以及其他相关过渡金属氧化物的行为的一个 更为全面的物理模型,应能帮助光电子和自旋 电子等领域的新型功能材料的设计和开发。

基于分子的闪存材料

闪存正在成为智能手机、相机、U盘和其 他设备的标准配置。它可以达到的数据存储密 度最终受限于可以制造出的数据单元的最小 尺寸,所以基于分子的闪存对于延伸这些极限 来说是一个有吸引力的选择。Christoph Busche 及同事报告了与当前技术兼容的一类金属氧 化物团簇分子的设计、合成和电子表征。这些 新材料在原子水平上是高度可配置的,也有望 用在实际设备中。

(田学文 / 编译 更多信息请访问 www.naturechina.com/st)