
推广有着直接关系。

是一场灾难。

"群蛾乱舞"肇始于耕作制度?

神秘飞蛾

2005年6月下旬,河北省农区的部分夏 玉米苗地里,出现了一种不知名的虫子。这种 虫子啃食玉米苗根基部,严重的会造成幼苗死 苗。20多天后,虫子蛹化成蛾,在农田中漫天 飞舞。

"那个阶段我们正在编写《玉米病虫害》这 本书,但缺少其中一种害虫的图片。"姜京字, 河北省植保总站研究员,她所提到的正是当下 被农民俗称为"黄地老虎"的一种农业害虫。

此时,得知上述信息,安新县植保站站长 打电话告诉姜京字:"我们这里现在有很多'黄 地老虎',你赶紧讨来看。

驱车赶到安新,姜京宇走进玉米苗地里-看,发现不对劲儿。

一株上最多的能有几十头, 把苗咬得很 厉害。"姜京宇在接受《科学时报》采访时回忆,

这种肉虫子呈灰褐色,各方面特征不像是他们 要找的"黄地老虎" 为了搞清楚情况,姜京宇把活的幼虫从安 新带回了石家庄,放在河北农业大学的实验室

里饲养。几天后,虫子化蛹、从中飞出蛾子,让 人大跌眼镜的是,"所有人都不认识它" 几经周折,中科院动物所应用昆虫学课题

组组长武春生拿着虫子的标本,翻遍了国内外 的文献和资料,终于找到几行关于这种蛾子的 喜欢隐蔽、潮湿的环境,是杂食性昆

2005年下半年,危害极大但却不知名的 虫子最终被鉴定出学名一 -二点委夜蛾。

然而,6年过去了,夏玉米地里的"群蛾乱 舞"不但没有得到遏制,灾害反而扩展到山东、 河南、安徽、江苏、山西甚至北京

对此,各地农业部门的解释是:对这种新 发害虫,我们知之甚少

"今年,我国黄淮海玉米产区新害虫二点 委夜蛾暴发并严重为害,共发生3290万亩,占 夏玉米播种面积的20%,重发面积高达260万 亩。"国家玉米产业技术体系病虫害防控研究 室主任、中国农业科学院植物保护研究所研究 员王振营认为,这"祸起"耕作制度的改变。

如何成为害虫

武春生在为二点委夜蛾定名时发现,各国 的文献资料中,从来没有记载过它是一种害

及成虫

米根茎咬成孔洞

右三:二点委夜蛾把玉

"根据资料,二点委夜蛾在俄罗斯、日本、

朝鲜等5个国家都有分布。"武春生对《科学时 报》记者说,过去它只是一种普通的蛾子,没有 人专门去研究它,所以国内外至今都还没有关 于它的基础生物学方面的文献。

种普通的蛾子,忽然之间成为危害玉米 地的害虫,一定会有原因。

从 2008 年起, 王振营就开始关注二点委 夜蛾。几年下来,他逐渐发现了一些规律。

"根据近几年我们在各地的一些观测,二 点委夜蛾就是在小麦联合收割机收割之后的 麦秸和麦糠下栖息。"王振营分析说,这主要与 它的生活习性相关。

作为最早的发现者,姜京宇也有同样的感 "我每年都到地里去看,有的麦秸有 20 厘 米厚,这种地方二点委夜蛾发生得就会比较严 重,麦糠和麦秸给它们营造了潮湿、隐蔽的生 存环境

王振营分析,过去传统的耕作方式主要 是靠人工,并且农户一般会把秸秆收走喂牲 口,土地重新耕翻之后再播种,当时的耕作 制度不适合二点委夜蛾的生长。但近些年 随着耕作制度改革,传统耕作方式逐渐被机 械化所替代,并倡导秸秆还田、提高耕地利 用率和生产效率、增加复种指数等,为病虫

害的发生提供了新的空间

现在在北方地区经常可以看到:小麦联合 收割机在割麦的同时,把小麦秸秆切碎并且均 匀地抛撒在地面上。紧跟其后的玉米播种机同 时播下种子,实现了麦收、秸秆切碎、玉米播种 的"一条步"作业

"这样积累几年下来,田间的麦秸多了。尤 其是最近几年,各地都在禁止收割后烧茬,田 间环境变化很大。"姜京宇说,现在的耕作制度 给了二点委夜蛾在田间一个很好的栖息环境。

其实,不仅仅是二点委夜蛾,近些年来,我 国仅玉米病虫害的新发比例就呈逐年增长态

耕作方式的"双刃剑"效应

王振营说,玉米上的病虫害多发,原因有 很多,"但主要是耕作制度上的变化和品种上 的变化"

也就是说,耕作制度发生变化后,病虫害 也会发生变化。比如秸秆还田、单一作物的大 面积种植,都会使得农作物发生新的病虫害。

又如,原来可能在杂草上生存的虫子,随 着玉米大面积种植或者连作,有些就会发生分

化。如原来取食杂草的虫子,因为有了除草剂 的制约,转而去了作物上生存;过去小麦上的 害虫,随着秸秆的还田,又适应了在玉米上的

此外,一些过去抗病害的品种,在大面积 常年种植后,有可能会集中暴发其他病害。

"现在,各地来找我鉴定虫子的很多,大概 每年有二三十个。"武春生的说法也印证了这 一观点。

但不可否认的是,我国人多地少,耕作制 度的变化不但是社会经济发展的需要,也是社 会消费的需求。

"现在的耕作制度,和我们植保的要求正 好是相反的。但这是国家的大趋势,我们只能 想办法来应对。"姜京宇直言。

"经过几年的实验,我们现在采取的措施 一般是放毒饵、毒土或者喷雾,在监测和预防上比较有效的是使用黑光灯。"姜京宇说,二点 委夜蛾成虫发生期对光有很好的趋性,可以利 用杀虫灯大面积诱杀。

但是,由于只是在玉米苗期危害一代,对 危害代过去后的二点委夜蛾的追踪研究须引 起重视。姜京宇表示,不搞清楚新发害虫的机 理,防治工作仍将无从下手。

防治新发病虫害 科研须提速

近年来,随着机械化程度的提高,大田作物普遍 推广了免耕播种、秸秆还田等新的耕作制度,提高了 效率,减少了开支,同时也使农田生态发生了巨大变

今年7月底,农业部在山东召开新发病虫害相关 会议,探讨玉米新生病虫害的防治工作。但尽管如此, 多个省市的防治工作仍困难重重。

对此,《科学时报》专访了国家玉米产业技术体系 病虫害防控研究室主任、中国农业科学院植物保护研 究所研究员王振营。

《科学时报》:今夏玉米二点委夜蛾虫害的发生是 否与先进耕作制度的推广有直接关系?

王振营:二点委夜蛾是耕作制度变革后新发生的 害虫,除此之外,麦根蝽、耕葵粉蚧等直接从小麦上转 到玉米苗上为害。

二点委夜蛾今年发生较严重,主要有以下几方面 原因。一是玉米种植制度(麦套玉米和秸秆还田)为该 害虫特别是其幼虫提供了极佳的庇护所;二是这些年 防治工作没有引起足够重视,虫源积累导致危害从量 变到质变,故今年发生较严重;三是缺乏必要的系统 研究,尤其是虫情监测没有跟上,特别是在全面推行 小麦秸秆还田的情况下;四是其他不详原因。

《科学时报》:未来如何加强二点委夜蛾的防

王振营:第一,政府补贴灭茬。麦收后灭茬可以破坏 二点委夜蛾的繁殖和栖息地,明显减轻二点委夜蛾的危 害。但灭茬投入较高,灭一次茬投入在50~60元/亩左 右,灭两次茬投入在100元/亩以上,农民投入过高, 需要政府补贴才能使灭茬技术得以推广

第二,实行统防统治。由于二点委夜蛾成虫发生 期对光有很好的趋性,各地植保部门在二点委夜蛾成 虫发生期,应有组织地利用杀虫灯大面积诱杀。在幼 虫发生期组织专业化防治队伍进行统一防治,提高防

第三,在目前该害虫的发生规律不明确、防控技 术和监测技术缺乏的紧迫形势下,建议组织科研、教 学和推广专家进行协作研究,深入系统地澄清其发 生危害规律,研究监测技术和科学的防治方法,为今 后长期治理提供技术支撑,从根本上解决该害虫的 危害,确保我国夏玉米安全生产。

《科学时报》:具体到耕作制度上,都有哪些变化 与病虫害直接相关?

王振营:首先,免耕与浅耕保护了地下害虫的栖 息场所,增加了种群数量。杂食或多食性害虫从上茬 作物或田间杂草直接转移到玉米苗上为害。

例如,水稻收获后免耕直播小麦,灰飞虱直接从 水稻上转移到小麦上为害、越冬,为灰飞虱提供了充 足食料和适宜的越冬场所。稻茬麦田灰飞虱种群数量 大,2009年,我们在济宁调查,平播小麦一代灰飞虱 数量在1万~3万头,稻茬麦田高达800万头,导致 玉米粗缩病发生。

其次,秸秆还田的优点是提高了土壤的有机质含 量及通透性,有利于保墒;降低了在秸秆中越冬的害 虫种群数量

但是,秸秆还田将病原菌带回土壤,使土壤的菌 量增加,土传病害如玉米褐斑病、玉米茎腐病、玉米丝 黑穗病、玉米瘤黑粉病、玉米纹枯病和苗枯病等加重。 新的土传病害玉米鞘腐病上升。此外,小麦赤霉病病 原菌随麦秸在土壤中累积,造成禾谷镰孢菌茎腐病和 穗腐病上升。

第三,大面积连作使农田无法轮作或倒茬,造成土 壤肥力失衡,十壤根际微生物区系发生变化。病原菌 在十壤中不断累积,导致十传病害严重发生。如茎腐 病的上升、丝黑穗的回升、褐斑病和纹枯病的加重。鞘 腐病在一些地区呈上升趋势,玉米矮化病也有加重的

最后,间作、套作的优点是增加作物的生长时间, 提高产量;缺点是会导致一些病虫害的严重发生,如 玉米粗缩病和玉米矮花叶病,使虫害转移下茬为害。

这样的例子还有很多,比如播种面积,小麦、玉米 和水稻的同区域种植等,都对病虫害的发生有影响。

《科学时报》:对新发生的病虫害,目前我国的科 研状况如何?

王振营:面对新的生态体系,我们在病虫害研究 方面显然落后了。过去对二点委夜蛾的研究很少,没 文献、没资料,所以其发生规律至今并不清楚,监测和 防控技术也没有研究资料可以借鉴。今年大面积发生 的二点委夜蛾,也没有提前预测预防,而是虫情发生 后才紧急治虫。

2002年小麦潜叶蝇大面积发生,2003年小麦赤 霉病暴发,2004年玉米褐斑病普遍发生,我们的防治 措施都是在病虫害发生后进行的,提前的预防措施还

现在农业部也了解到玉米上新发病虫害的严重 性,也知道与耕作制度的变化相关,但是,在国家层面 的课题研究还没有开展。

相关专家呼吁了好几年,去年底,河北省植保站 才申请到省农业厅课题"主要粮食作物新发生重大病 虫害发生规律及防控技术体系"。

要对新的耕作制度下新的病虫害进行预测预防 首先要使病虫害研究立项与新耕作制度的推广应用 同步,并形成长期持续的预测预报预防体系,这样才 能促进粮食生产的稳定发展,为粮食稳产、增产提供

<u>背景链接</u>

今年农作物病虫害程度预计重于去年

今年年初,全国农业技术推广服务中心 组织 100 多名专家进行综合分析,预计 2011 年我国农作物重大病虫害程度重于去年,发 生面积约为57亿亩次,同比增加4%。

水稻病虫害

继续呈严重发生态势, 预计发生面积 13.9亿亩次,同比增加5%。其中,虫害发生 9.9亿亩次,病害发生4.0亿亩次。

虫害以稻飞虱、稻纵卷叶螟和二化螟为 。其中,稻飞虱发生面积4.2亿亩次;稻纵 卷叶螟发生面积 3.3 亿亩次;二化螟发生 2.1 亿亩次;三化螟发生3000万亩次。

病害以纹枯病、稻瘟病和南方水稻黑条 矮缩病为主。

玉米病虫害

总体中等发生,预计发生10.3亿亩次, 同比增加5%。其中,虫害发生7.5亿亩次,病 害发生 2.8 亿亩次。

虫害以玉米螟、地下害虫、蚜虫、棉铃 虫、粘虫和叶螨为主。其中,玉米螟发生面积 3.4亿亩次; 地下害虫发生面积 9000 万亩; 蚜虫发生面积6500万亩;棉铃虫发生面积 5000 万亩;粘虫发生面积 4500 万亩次;叶螨 发生面积3000万亩。

预计病害以大小斑病、丝黑穗病、褐斑 病和粗缩病为主。

小麦病虫害

总体为偏重发生,程度重于2010年,预 计发生面积 10.0 亿亩次,同比持平。其中,虫 害发生5.4亿亩次,病害发生4.6亿亩次。

预计虫害以穗期蚜虫、麦蜘蛛和吸浆虫 为主。其中, 穗期蚜虫全国发生面积 2.4 亿 亩;麦蜘蛛全国发生面积1.1亿亩;吸浆虫发 生面积 3700 万亩。

预计病害以条锈病、白粉病、纹枯病和 赤霉病为主。

可靠的技术支撑。